Hall effect

$$
V_H = -\left(\frac{1}{nq}\right) \frac{I_x B_z}{t}
$$

Dr Mohammad Abdur Rashid

Jashore University of Science and Technology **Dr Rashid, 2020**

Hall effect

Right-hand rule

The vector product $\vec{A} \times \vec{B}$ determined by the right-hand rule.

University Physics with Modern Physics – Young and Freedman

Magnetic force on moving electrons

Motion of electrons University Physics with Modern Physics Magnetic field (out of paper) – Young and Freedman

 $\overline{\bm{R}}$

Magnetic force on moving electrons

Direction of current University Physics with Modern Physics Magnetic field (out of paper) – Young and Freedman

 ϕ

 \vec{B}

Magnetic force on moving holes

Magnetic force on moving holes

http://courses.washington.edu/phys431 /hall_effect/hall_effect.pdf

Assume the conductor to have charge carrier of charge q (can be either positive or negative or both, but we take it to be of just one sign here), charge carrier number density n (i.e., number of carriers per unit volume), and charge carrier drift velocity v_x when a current I_x flows in the positive x direction.

 u \hat{z}

http://courses.washington.edu/phys431 /hall_effect/hall_effect.pdf

The charge carriers will experience a Lorentz force $q(\mathbf{v} \times \mathbf{B})$ that will deflect them toward one side of the slab. The result of this deflection is to cause an accumulation of charges along one side of the slab which creates a transverse electric field E_y that counteracts the force of the magnetic field.

http://courses.washington.edu/phys431 /hall_effect/hall_effect.pdf

When steady state is reached, there will be no net flow of charge in the y direction, since the electrical and magnetic forces on the charge carriers in that direction must be balanced. Since the force of an electric field on a charge q is $q\mathbf{E}$, we have

$$
q\mathbf{E} = q(\mathbf{v} \times \mathbf{B})
$$

$$
E_y = v_x B_z
$$

http://courses.washington.edu/phys431 /hall_effect/hall_effect.pdf

The potential difference across the sample — the Hall voltage V_H — which is related to the Hall field by

$$
V_H = -E_y w
$$

$$
= -v_x w B_z
$$

The current I_x is related to the charge density nq and the drift velocity v_x as

$$
I_x=nqv_xwt
$$

http://courses.washington.edu/phys431 /hall_effect/hall_effect.pdf

$$
V_H = -\left(\frac{1}{nq}\right) \frac{I_x B_z}{t}
$$

The Hall coefficient:
$$
R_H = \frac{1}{nq}
$$

It is positive if the charge carriers are positive, and negative if the charge carriers are negative. In practice, the polarity of V_H determines the sign of the charge carriers.

Thank You

To receive notification of new video please subscribe to our channel.

You may also let us know your comments.

