Diode Application

Dr Mohammad Abdur Rashid

Jashore University of Science and Technology **Dr Rashid, 2020 Dr Rashid, 2020**

Electronic Devices and Circuit Theory – Boylestad, Nashelsky

Chapter 2: Diode Applications

Jashore University of Science and Technology **Dr Rashid, 2020 Dr Rashid, 2020**

Diode

Jashore University of Science and Technology Dr Rashid, 2020

Current versus voltage characteristics

LED residential and commercial lighting

Diode symbol

Load-line analysis

Series diode configuration: (a) circuit; (b) characteristics.

In general, a diode is in the "on" state if the current established by the applied sources is such that its direction matches that of the arrow in the diode symbol, and $V_D \geq 0.7$ V for silicon, $V_D \geq 0.3$ V for germanium, and $V_D \geq 1.2$ V for gallium arsenide.

Applying Kirchhoff's voltage law

$$
I_D = \frac{E}{R}\Big|_{V_D = 0 \text{ V}}
$$

$$
V_D = E|_{I_D=0\,\mathrm{A}}
$$

$$
E = V_D + I_D R
$$

Load line and point of operation

Jashore University of Science and Technology **Dr Rashid, 2020**

Q-point

The point of operation is usually called the quiescent point (abbreviated " *Q*-point") to reflect its "still, unmoving" qualities as defined by a dc network.

(a) Circuit; (b) characteristics.

Jashore University of Science and Technology **Dr Rashid, 2020**

Using the Q -point values, the dc resistance

$$
I_D = \frac{E}{R_D + R} = \frac{10 \text{ V}}{42.16 \Omega + 500 \Omega} = \frac{10 \text{ V}}{542.16 \Omega} \approx 18.5 \text{ mA}
$$

$$
V_R = \frac{RE}{R_D + R} = \frac{(500 \Omega)(10 \text{ V})}{42.16 \Omega + 500 \Omega} = 9.22 \text{ V}
$$

Half-wave rectifier

Half-wave rectifier

Half-wave rectifier

Half-wave rectified signal

Half-wave rectified signal

Alternating current (AC)

Average of *V*(*t*) over time *T*

 \overline{V}

$$
\overline{V} = \frac{1}{T} \int_0^T V(t) \mathrm{d}t
$$

$$
\big|V(t)=V_m\sin(\omega t)\big|
$$

$$
= \frac{V_m}{T} \int_0^T \sin(\omega t) dt
$$

\n
$$
= \frac{V_m}{T} \left[-\frac{\cos(\omega t)}{\omega} \right]_0^T
$$

\n
$$
= \frac{V_m}{\omega T} \{-\cos(\omega T) + \cos 0 \}
$$

\n
$$
= \frac{V_m}{2\pi} \{-\cos(2\pi) + \cos 0 \}
$$

\n
$$
= \frac{V_m}{2\pi} (-1 + 1)
$$

\n
$$
= 0.
$$

Average of *V*(*t*) over time *T*/2

 $V_{\rm avg}$

$$
V_{\text{avg}} = \frac{1}{T/2} \int_0^{T/2} V(t) dt
$$

$$
\big|V(t)=V_m\sin(\omega t)\big|
$$

$$
= \frac{2V_m}{T} \int_0^{T/2} \sin(\omega t) dt
$$

\n
$$
= \frac{2V_m}{T} \left[-\frac{\cos(\omega t)}{\omega} \right]_0^{T/2}
$$

\n
$$
= \frac{2V_m}{\omega T} \{-\cos(\omega T/2) + \cos 0\}
$$

\n
$$
= \frac{2V_m}{2\pi} \{-\cos(\pi) + \cos 0\}
$$

\n
$$
= \frac{2}{\pi} V_m
$$

\n
$$
\approx 0.637 V_m.
$$

The RMS value of *V*(*t*)

The term "RMS" stands for "Root-Mean-Squared", also called the effective or heating value of alternating current, is equivalent to a DC voltage that would provide the same amount of heat generation in a resistor as the AC voltage would if applied to that same resistor.

RMS is not an "Average" voltage, and its mathematical relationship to peak voltage varies depending on the type of waveform.

$$
V_{\rm rms} = \left[\frac{1}{T} \int_0^T V^2(t) \mathrm{d}t\right]^{1/2}
$$

The RMS value of *V*(*t*)

$$
V_{\text{rms}}^2 = \frac{V_m^2}{T} \int_0^T \sin^2(\omega t) dt
$$

\n
$$
= \frac{V_m^2}{2T} \int_0^T 2 \sin^2(\omega t) dt
$$

\n
$$
= \frac{V_m^2}{2T} \int_0^T \{1 - \cos(2\omega t)\} dt
$$

\n
$$
= \frac{V_m^2}{T2} \int_0^T dt - \frac{V_m^2}{T} \int_0^T \cos(2\omega t) dt
$$

\n
$$
= \frac{V_m^2}{2T} \Big[T \Big]_0^T - \frac{V_m^2}{2T} \Big[\frac{\sin(2\omega t)}{2\omega} \Big]_0^T
$$

Jashore University of Science and Technology **Dr Rashid, 2020**

The RMS value of *V*(*t*)

$$
V_{\text{rms}}^2 = \frac{V_m^2}{2} - \frac{V_m^2}{4\omega T} \left\{ \sin(2\omega T) - \sin(0) \right\}
$$

= $\frac{V_m^2}{2} - \frac{V_m^2}{4\omega T} \left\{ \sin(4\pi) - \sin(0) \right\}$
= $\frac{V_m^2}{2} - \frac{V_m^2}{4\omega T} (0 - 0)$
= $\frac{V_m^2}{2}$.

$$
V_{\text{rms}} = \frac{V_m}{\sqrt{2}} \approx 0.707 V_m
$$

The RMS and peak value of AC voltage

$$
V_{\rm rms} = \frac{V_m}{\sqrt{2}} \approx 0.707 V_m
$$

$$
V_{\text{dc}} \cong 0.636(V_m - 2V_K)
$$

Center-tapped transformer full-wave rectifier

Network conditions for the positive region of input voltage

Network conditions for the negative region of input voltage

