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1 Density of States

The density of states for electrons in a band yields the number of states in a certain
energy range. This function is important in electronic processes, particularly in transport
phenomena. When we denote the density-of-states function by g(E), it is defined by the
relation

g(E)dE = number of electron states per unit volume in the energy range (E,E+dE).

Consider a cube of semiconductor crystal with length L on each side. The electron waves
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in the crystal are standing waves. In the x direction, the wavelength is

λx =
L

nx
(1)

nx is equal to 1, 2, 3 . . . The wavelength is related to the electron momentum in the x
direction, px, through the de Broglie relationship.

px = ± h

λx
(2)

h is the Planck’s constant and + and − represent the momentum in the x and the −x
directions. Since λx only takes on a set of discrete values, so does px.

px = ±nxh
L

(3)

The increment between the allowable pxs is h/L . Similarly py and pz can only take
on discrete values with increments of h/L. Fig. 1 shows a three dimensional space with
axes px, py, and pz. Allowed energy levels occupy points separated from one another by
h/L in px, py, and pz. There are two allowed states (the factor of 2 accounting for the
two spin directions) for every cube of h3/L3 volume in the momentum space. Each state
therefore occupies a volume of h3/2L3.

Figure 1: The allowable states in the momentum space from a large uniform 3-D grid. Only
a few grid points are shown for simplicity [1].

Figure 2 shows the same momentum space as Fig. 1 but in a very much zoomed-out
scale. The allowable states are now semi-continuous. Nonetheless, each allowed state
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Figure 2: Each sphere in the momentum space represents a constant-energy surface [1].

still occupies a volume of h3/2L3. A sphere in this space represents a constant total
momentum, p, and therefore a constant kinetic energy, E.

E =
p2

2m∗
(4)

where m∗ is the electron effective mass. Using (4) twice, we find that

dE

dp
=

p

m∗
=

√
2m∗E

m∗
=

√
2E

m∗
. (5)

According to (5), two spheres that differ in energy dE have two radii that differ by

dp =

√
m∗

2E
dE. (6)

The volume of the shell that is between these two spheres is the surface area times dp.

Volume = 4πp2dp = 4π(2m∗E)dp = 8πm∗
√
m∗E

2
dE, (7)

where we have first used (4) and then (6). The number of states contained in this shell
between E and E + dE is the volume of the shell divided by h3/2L3.

8πm∗
√
m∗E

2
× 2L3

h3
dE. (8)

Therefore the number of states per unit volume (the volume of the sample is L3) per unit
energy is

g(E) =
8πm∗

√
2m∗E

h3
. (9)

Using } = h/2π, reduced Planck’s constant, we have

g(E) =
1

2π2

(
2m∗

}2

)3/2

E1/2. (10)
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Here E is the kinetic energy of the electron. This shows that g(E) ∼ E1/2, which means
that the curve g(E) has a parabolic shape (Fig. 3). The function g(E) increases with E
because, as we see from Fig. 2, the larger the energy the greater the radius, and hence
the volume of the sphere, and consequently the larger the number of states lying within
it. Also note that g(E) ∼ m∗3/2. That is, the larger the mass the greater the density of
states.

Figure 3: The density of states [2].

2 Fermi-Dirac distribution function

The Fermi-Dirac distribution function, also called Fermi function, provides the probabil-
ity of occupancy of energy levels by Fermions. Fermions are half-integer spin particles,
which obey the Pauli exclusion principle. The Pauli exclusion principle postulates that
only one Fermion can occupy a single quantum state. Therefore, as Fermions are added
to an energy band, they will fill the available states in an energy band just like water
fills a bucket. The states with the lowest energy are filled first, followed by the next
higher ones. At absolute zero temperature (T = 0 K), the energy levels are all filled up
to a maximum energy, which we call the Fermi level. No states above the Fermi level
are filled. At higher temperature, one finds that the transition between completely filled
states and completely empty states is gradual rather than abrupt.

Electrons are Fermions. Therefore, the Fermi function provides the probability that an
energy level at energy, E, in thermal equilibrium with a large system, is occupied by an
electron. The system is characterized by its temperature, T , and its Fermi energy, EF .

To derive the Fermi-Dirac distribution function, we start from a series of possible energies,
labeled Ei. At each energy, we can have gi possible states and the number of states that
are occupied equals gifi, where fi is the probability of occupying a state at energy Ei.
We also assume that the number of possible states is very large, so that the discrete
nature of the states can be ignored.

The number of possible ways - called configurations - to fit gifi electrons in gi states,
given the restriction that only one electron can occupy each state, equals:

Wi =
gi!

(gi − gifi)!(gifi)!
. (11)
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This equation is obtained by numbering the individual states and exchanging the states
rather than the electrons. This yields a total number of gi! possible configurations.
However since the empty states are all identical, we need to divide by the number of
permutations between the empty states, as all permutations cannot be distinguished
from each other and can therefore only be counted once. In addition, all the filled states
are indistinguishable from each other, so we need to divide also by all permutations
between the filled states, namely (gifi)!.

The number of possible ways to fit the electrons in the number of available states is called
the multiplicity function.

The multiplicity function for the whole system is the product of the multiplicity functions
for each energy Ei:

Wi =
∏
i

Wi =
∏
i

gi!

(gi − gifi)!(gifi)!
. (12)

Using Stirlings approximation:

lnn! = n lnn− n+O(lnn) ≈ n lnn− n (13)

one can eliminate the factorial signs in (12), yielding:

lnW =
∑
i

Wi =
∑
i

[gi ln gi − gi(1− fi) ln(gi − gifi)− gifi ln(gifi)]. (14)

The total number of electrons in the system equals N and the total energy of those N
electrons equals U . These system parameters are related to the number of states at each
energy, gi, and the probability of occupancy of each state, fi, by:

N =
∑
i

gifi (15)

and

U =
∑
i

Eigifi. (16)

According to the basic assumption of statistical thermodynamics, all possible configura-
tions are equally probable. The multiplicity function provides the number of configura-
tions for a specific set of occupancy probabilities, fi. The multiplicity function sharply
peaks at the thermal equilibrium distribution since this is the most likely distribution of
the system and must therefore be associated with the largest number of - equally probable
- configurations. The occupancy probability in thermal equilibrium is therefore obtained
by finding the maximum of the multiplicity function, W , while keeping the total energy
and the number of electrons constant.

For convenience, we maximize the logarithm of the multiplicity function instead of the
multiplicity function itself. According to the Lagrange method of undetermined multi-
pliers, we must maximize the following function:

lnW − a
∑
j

gjfj − b
∑
j

Ejgjfj (17)
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where a and b need to be determined. The maximum of the multiplicity function, W , is
obtained from:

∂

∂(gifi)

[
lnW − a

∑
j

gjfj − b
∑
j

Ejgjfj

]
= 0, (18)

which can be solved, yielding:

ln
gi − gifi
gifi

− a− bEi = 0 (19)

or

fi = fFD(Ei) =
1

1 + exp(a+ bEi)
(20)

which can be written in the following form

fFD(Ei) =
1

1 + e(Ei−EF )/β
(21)

with β = 1/b and EF = −a/b. The symbol EF was chosen since this constant has units
of energy and will be the constant associated with this probability distribution.

Taking the derivative of the total energy, (16) one obtains:

dU =
∑
i

Eid(gifi) +
∑
i

gifidE. (22)

Using the Lagrange equation, this can be rewritten as:

dU = βd(lnW ) +
∑
i

gifidE + EFdN. (23)

Any variation of the energies, Ei, can only be caused by a change in volume, so that the
middle term can be linked to a volume variation dV .

dU = βd(lnW ) +

[∑
i

gifi
dE

dV

]
dV + EFdN. (24)

Comparing this to the thermodynamic identity:

dU = TdSpdV + µdN (25)

one finds that β = kT and S = k lnW , where k is a constant that must be determined
. The energy, EF , equals the energy associated with the particles, namely the electro-
chemical potential, µ.

The Fermi-Dirac distribution function then becomes:

fFD(E) =
1

1 + e(E−EF )/kT
. (26)
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The constant k is determined to be the Boltzmann constant kB = 1.380649×1023 J·K−1.
In terms of kB Fermi-Dirac distribution function is written as

fFD(E) =
1

e(E−EF )/kBT + 1
. (27)

The Fermi function has a value of one for energies, which are more than a few times
kBT below the Fermi energy. It equals 1/2 if the energy equals the Fermi energy and
decreases exponentially for energies which are a few times kBT larger than the Fermi
energy. While at T = 0 K the Fermi function equals a step function, the transition is
more gradual at finite temperatures and more so at higher temperatures. This function
is plotted in Figure 4 at 150, 300 and 600 K.

Figure 4: The Fermi function at three different temperatures [3].

3 Fermi energy

Fermi energy is often defined as the highest occupied energy level of a material at absolute
zero temperature. In other words, all electrons in a body occupy energy states at or below
that body’s Fermi energy at 0 K. The concept of the Fermi energy is a crucially important
concept for the understanding of the electrical and thermal properties of solids. At higher
temperatures a certain fraction, characterized by the Fermi function, will exist above the
Fermi level. The Fermi level plays an important role in the band theory of solids. In
doped semiconductors, p-type and n-type, the Fermi level is shifted by the impurities,
illustrated by their band gaps (Fig. 5). The Fermi level is referred to as the electron
chemical potential in other contexts.

4 The dynamical effective mass

An electron in crystal may behave as if it had a mass different from the free electron
mass m0. There are crystals in which the effective mass of the carriers is much larger
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Figure 5: Filling of the electronic states in various types of materials at equilibrium. Here,
height is energy while width is the density of available states for a certain energy in the material
listed. The shade follows the FermiDirac distribution (black = all states filled, white = no state
filled). In metals and semi-metals the Fermi level EF lies inside at least one band. In insulators
and semiconductors the Fermi level is inside a band gap; however, in semiconductors the bands
are near enough to the Fermi level to be thermally populated with electrons or holes [wikipedia].

or much smaller than m0. The effective mass may be anisotropic, and it may even be
negative. The important point is that the electron in a periodic potential is accelerated
relative to the lattice in an applied electric or magnetic field as if its mass is equal to an
effective mass.

When an electric field E is applied to a crystal, the electron undergoes an acceleration.
This can be calculated as follows: Since acceleration is the time derivative of velocity, we
have

a =
dv

dt
, (28)

where we have chosen to treat the one-dimensional case.

The de Broglie wavelength λ of a particle of momentum p is determined by the relation

λ =
h

p
. (29)

Therefore,

p =
h

λ
=

h

2π

2π

λ
= }k, (30)

where k = 2π/λ is the wave vector and } = h/2π is the reduced Planck’s constant. Hence
the velocity of the electron is in terms of the wave vector is

v =
}k
m∗

, (31)

where the electronic mass me is replaced by m∗, the effective mass. Since the velocity is
a function of the wave vector k, and consequently the eq. (28) may be rewritten as

a =
dv

dk

dk

dt
. (32)
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Using the (30) we can write the kinetic energy of the electron as

E =
p2

2m∗
=

}2k2

2m∗
. (33)

The first derivative of the above equation with respect to k gives

dE

dk
=

2}2k
2m∗

=
}k
m∗

} =
p

m∗
} = v}, (34)

or

v =
1

}
dE

dk
. (35)

Now, because of the electric field E , electron in the crystal experiences a force F = −eE
and hence a change in its energy. The rate of absorption of energy by the electron is

dE(k)

dt
= −eE · v, (36)

where the term on the right is clearly the expression for the power absorbed by a moving
object. If we write

dE(k)

dt
=

dE

dk

dk

dt
, (37)

and use (35) and (36) we find the simple relation

}
dk

dt
= −eE = F. (38)

Hence with the help of (35), (38) we get from (32)

a =
d

dk

(
1

}
dE

dk

)
· F
}

=
1

}2
d2E

dk2
F. (39)

This has the same form as Newton’s second law, provided we define a dynamical effective
mass m∗ by the relation

m∗ = }2
/(d2E

dk2

)
. (40)

Thus, insofar as the motion in an electric field is concerned, the electron behaves like a
free electron whose effective mass is given by (40).

The mass m∗ is inversely proportional to the curvature of the band; where the curvature
is large –that is, d2E

dk2
is large –the mass is small; a small curvature implies a large mass

(Fig. 6).
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Figure 6: The inverse relationship between the mass and the curvature of the energy band [2].

The effective mass m∗ is positive near the bottom of the band, where the curvature is
positive. But near the top, where the band curvature is negative, the effective mass is
also negative. The fact that the effective mass is different from the free mass is due to
the effect of the lattice force on the electron (Fig. 7).

Figure 7: (a) The band structure, and (b) the effective mass m∗ versus k [2].

5 Carrier concentration in intrinsic semiconductor

In the field of semiconductors, electrons and holes are usually referred to as free carriers,
or simply carriers, because it is these particles which are responsible for carrying the
electric current. The number of carriers is an important property of a semiconductor, as
this determines its electrical conductivity. In order to determine the number of carriers,
we need to use the the Fermi-Dirac (FD) distribution (eq. (27)),

f(E) =
1

e(E−EF )/kBT + 1
, (41)

which gives the probability that an energy level E is occupied by an electron when the
system is at temperature T (Fig. 8) .

Here we see that, as the temperature rises, the unoccupied region below the Fermi level
EF becomes longer, which implies that the occupation of high energy states increases
as the temperature is raised, a conclusion which is most plausible, since increasing the
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Figure 8: The Fermi-Dirac distribution function [2].

temperature raises the overall energy of the system. Note also that f(E) = 1
2

at the
Fermi level (E = EF ) regardless of the temperature. That is, the probability that the
Fermi level is occupied is always equal to one-half.

In semiconductors it is the tail region of the FD distribution which is of particular interest.
In that region the inequality (E−EF )� kBT holds true, and one may therefore neglect
the term unity in the denominator of (41). The FD distribution then reduces to the form

f(E) = eEF /kBT e−E/kBT , (42)

which is the familiar Maxwell-Boltzmann, or classical, distribution. This simple distri-
bution therefore suffices for the discussion of electron statistics in semiconductors.

We can calculate the concentration of electrons in the CB in the following manner. The
number of states in the energy range (E,E + dE) is equal to ge(E)dE, where ge(E) is
the density of electron states (eq. (10)). Since each of these states has an occupation
probability f(E), the number of electrons actually found in this energy range is equal to
f(E)ge(E)dE. The concentration of electrons throughout the CB is thus given by the
integral over the band

n =

∫ Ec2

Ec1

f(E)ge(E)dE, (43)

where Ec1 and Ec2 are the bottom and top of the band, respectively, as shown in Fig. 9(a)
and the distribution function is shown in Fig. 9(b). Note that the entire CB falls in the
tail region. Thus we may use the Maxwell-Boltzmann function for f(E) in (43).

The density of states is given by

ge(E) =
1

2π2

(
2me

}2

)3/2

(E − Eg)1/2, (44)

where the zero-energy level has been chosen to lie at the top of the VB. Thus ge(E)
vanishes for E < Eg, and is finite only for E > Eg, as shown in Fig. 9(c).
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Figure 9: (a) Conduction and valence bands, (b) The distribution function, (c) Density of
states for electrons and holes: ge(E) and gh(E) [2].

When we substitute for f(E) and gc(E) into (43), we obtain

n =
1

2π2

(
2me

}2

)3/2

eEF /kBT

∫ ∞
Eg

(E − Eg)1/2e−E/kBTdE

=
1

2π2

(
2me

}2

)3/2

e(EF−Eg)/kBT

∫ ∞
Eg

(E − Eg)1/2e−(E−Eg)/kBTdE. (45)

For convenience, the top of the CB has been set equal to infinity. Since the integrand
decreases exponentially at high energies, the error introduced by changing this limit from
Ec2 to ∞ is quite negligible. In order to evaluate the integration we assume E − Eg =
(kBT )x to have∫ ∞

Eg

(E − Eg)1/2e−(E−Eg)/kBTdE = (kBT )3/2
∫ ∞
0

x1/2e−xdx. (46)

Now using the result ∫ ∞
0

x1/2e−xdx =
π1/2

2
, (47)

we find the electron concentration to be

n = 2

(
mekBT

2π}2

)3/2

e(EF−Eg)/kBT (48)

or

n = Nce
(EF−Eg)/kBT . (49)
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Here Nc ≡ 2

(
mekBT

2π}2

)3/2

is the effective density of states of the conduction band.

The electron concentration is still not known explicitly because the Fermi energy EF is
so far unknown. Essentially the same ideas employed above may also be used to evaluate
the number of holes in the VB. The probability that a hole occupies a level E in this
band is equal to 1− f(E), since f(E) is the probability of electron occupation. Thus the
probability of hole occupation fh is

fh = 1− f(E). (50)

Since the energy range involved here is much lower than EF , the FD function of (41)
must be used rather than (42). Thus

fh = 1− 1

e(E−EF )/kBT + 1
=

1

e(EF−E)/kBT + 1
' e(E−EF )/kBT , (51)

where the approximation in the last expression follows as a result of the inequality (EF −
E)� kBT . The validity of this inequality in turn can be seen by referring to Fig. 9(b),
which shows that EF −E is of the order of Eg/2, which is much larger than kBT at room
temperature.

The density of states for the holes is

gh =
1

2π2

(
2mh

}2

)3/2

(−E)1/2, (52)

which is appropriate for an inverted band. Note that the term (−E) in this equation is
positive, because the zero-energy level is at the top of the VB, and the energy is measured
positive upward and negative downward from this level.

The hole concentration is thus given by

p =

∫ 0

−∞
fh(E) gh(E)dE. (53)

When we substitute for fh(E) and gh(E) from the above equations and carry out the
integral as in the electron case, we obtain

p = 2

(
mhkBT

2π}2

)3/2

e−EF /kBT . (54)

or

p = Nve
−EF /kBT . (55)

Here Nv ≡ 2

(
mhkBT

2π}2

)3/2

is the effective density of states of the valance band.

The electron and hole concentrations have thus far been treated as independent quanti-
ties. The two concentrations are, in fact, equal, because the electrons in the CB are due
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to excitations from the VB across the energy gap, and for each electron thus excited a
hole is created in the VB. Therefore

n = p. (56)

If we substitute the values of n and p into the above equation, we obtain an equation
involving the only unknown, EF . The solution of this equation is

EF =
1

2
Eg +

3

4
kBT ln

(
mh

me

)
. (57)

Since kBT � Eg under usual circumstances, the second term on the right of (57) is very
small compared with the first, and the energy level is close to the middle of the energy
gap, i.e.

EF ≈
1

2
Eg. (58)

This is consistent with earlier assertions that both the bottom of the CB and the top of
the VB are far from the Fermi level. The fact that the Fermi level falls in the energy
gap –the forbidden region –poses no difficulties. This level is a theoretical concept and
no electrons need be present there.

The concentration of electrons may now be evaluated explicitly by using the above value
of EF . From (57) we have

EF
kBT

=
Eg

2kBT
+ ln

(
mh

me

)3/4

, (59)

or

eEF /kBT = eEg/2kBT

(
mh

me

)3/4

. (60)

Substitution of this into (48) yields

n = 2

(
mekBT

2π}2

)3/2

eEg/2kBT

(
mh

me

)3/4

e−Eg/kBT , (61)

or

n = 2

(
kBT

2π}2

)3/2

(memh)
3/4e−Eg/2kBT . (62)

The important feature of this expression is that n increases very rapidly –exponentially
–with temperature, particularly by virtue of the exponential factor. Thus as the temper-
ature is raised, a vastly greater number of electrons is excited across the gap. (This can
be visualized by recalling that as the temperature is raised, the tail of the FD distribution
in the CB becomes longer, and more states are occupied in this band.)
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We can estimate the numerical value of n by substituting the values Eg = 1 eV, me =
mh = 9.1 × 10−31 kg, and T = 300 K. Which gives n ' 1015 electrons/cm3, a typical
value of carrier concentration in semiconductors. Note that the expression (62) also gives
the hole concentration, since n = p. This fact immediately suggest that,

n = p = ni (63)

and

ni =
√
NcNve

−Eg/kBT . (64)

Therefore, ni is called the intrinsic carrier concentration.

Our discussion of carrier concentration in this section is based on the premise of a pure
semiconductor. When the substance is impure, additional electrons or holes are provided
by the impurities. In that case, the concentrations of electrons and holes may no longer
be equal, and the amount of each depends on the concentration and type of impurity
present. When the substance is sufficiently pure so that the concentrations of electrons
and holes are equal, we speak of an intrinsic semiconductor. That is, the concentrations
are determined by the intrinsic properties of the semiconductor itself. On the other hand,
when a substance contains a large number of impurities which supply most of the carriers,
it is referred to as an extrinsic semiconductor.

6 Impurity distribution functions

The distribution function of impurities differs from the Fermi-Dirac distribution function
even though the particles involved are still Fermions. The difference is due to the fact
that an ionized donor energy level still contains one electron with either spin. The donor
energy level cannot be empty since this would leave a doubly positively charged atom,
which would have an energy different from that of the singly ionized donor level. The
distribution function for donors therefore differs from the Fermi function and is given by:

fdoner(Ed) =
1

1
2
e(Ed−EF )/kBT + 1

(65)

The distribution function for acceptors differs also because of the different possible ways
to occupy the acceptor level. The neutral acceptor contains no electrons. The ionized
acceptor contains one electron, which can have either spin, while the doubly negatively
charged state is not allowed since this would require a different energy. This restriction
would yield a factor of 2 in front of the exponential term. In addition, one finds that most
commonly used semiconductors have a two-fold degenerate valence band, which causes
this factor to increase to four, yielding:

facceptor(Ea) =
1

4e(Ea−EF )/kBT + 1
(66)
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7 Semiconductor statistics

Semiconductors usually contain both donors and acceptors. Electrons in the CB can be
created either by interband thermal excitation or by thermal ionization of the donors.
Holes in the VB may be generated by interband excitation, or by thermal excitation of
electrons from the VB into the acceptor level. And in addition, electrons may fall from
the donor levels to the acceptor level. Figure 10 indicates these various processes.

Figure 10: The various electronic processes in a semiconductor [2].

Finding the concentrations of carriers–both electrons and holes –under the most general
of circumstances, taking all these processes into account, is quite complicated. Instead
of giving the details of such general calculations here, we shall treat a few special cases
instead, ones which are often encountered in practice. Two regions may be distinguished,
depending on the physical parameters involved: The intrinsic and the extrinsic regions.

The intrinsic region

The concentration of carriers in the intrinsic region is determined primarily by thermally
induced interband transitions. Consequently we have, to a good approximation,

n = p. (67)

In that case, we find the carrier concentrations as

ni = 2

(
kBT

2π}2

)3/2

(memh)
3/4e−Eg/2kBT , (68)

where ni = n = p is the intrinsic concentration. The intrinsic region obtains when the
impurity doping is small. When we denote the concentrations of donors and acceptors
by Nd and Na, the requirement for the validity of the intrinsic condition is

ni � (Nd −Na) (69)

The reason for this condition is readily understandable. There are Nd electrons at the
donor level, but of these a number Na may fall into the acceptors, leaving only Nd −Na
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electrons to be excited from the donor level into the conduction band. When condition
(69) is satisfied, the ionization of all these remaining impurities is not sufficient to appre-
ciably affect the number of electrons excited thermally from the VB. The semiconductor
may then be treated as a pure sample, and the influence of impurities disregarded. This
is precisely what we did in obtaining (68).

Since ni increases rapidly with temperature, the intrinsic condition becomes more favor-
able at higher temperatures. All semiconductors, in fact, become intrinsic at sufficiently
high temperatures (unless the doping is unusually high).

The extrinsic region

Quite often the intrinsic condition is not satisfied. For the common dopings encountered,
about 1015 cm−3, the number of carriers supplied by the impurities is large enough to
change the intrinsic concentration appreciably at room temperature. The contribution
of impurities, in fact, frequently exceeds those carriers that are supplied by interband
excitation. When this is so, the sample is in the extrinsic region.

Two different types of extrinsic regions may be distinguished. The first occurs when the
donor concentration greatly exceeds the acceptor concentration, that is, when Nd � Na.
In this case, the concentration of electrons may be evaluated quite readily. Since the
donor’s ionization energy is quite small, all the donors are essentially ionized, their elec-
trons going into the CB. Therefore, to a good approximation,

n = Nd (70)

The hole concentration is small under this condition. To calculate this concentration, we
multiply (48) and (54) and find

np = 4

(
kBT

2π}2

)3

(memh)
3/2e−Eg/kBT . (71)

Note that the troublesome Fermi energy has disappeared from the right side. Thus the
product np is independent of EF , and hence of the amount and type of doping; the
product np depends only on the temperature. We also see from comparison with (68)
that the right side is equal to n2

i [which is reasonable, since (71) is also valid in the
intrinsic region, in which case the left side is equal to n2

i ]. We may thus write

np = n2
i . (72)

This equation means that, if there is no change in temperature, the product np is a
constant, independent of the doping. If the electron concentration is increased, by varying
the doping, the hole concentration decreases, and vice versa.

When the doping is primarily of the donor type, n ' Nd, as shown by (70). According
to (72), the concentration

p =
n2
i

Nd

. (73)
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Since we are in the extrinsic region, ni � Nd, and hence p � Nd = n. Thus the
concentration of electrons is much larger than that of holes.

A semiconductor in which n� p is called an n-type semiconductor (n for negative); this
terminology dates back to the early days of semiconductors. Such a sample is charac-
terized, as we have seen, by a great concentration of electrons (donors). (For a strongly
n-type sample, n� p, while for a weakly n-type sample, n & p.)

The other type of extrinsic region occurs when Na � Nd, that is, the doping is primarily
by acceptors. Using an argument similar to the above, one then has

p ' Na, (74)

i.e., all the acceptors are ionized. The electron concentration, which is small, is given by

n =
n2
i

Na

. (75)

Such a material is called a p-type semiconductor. It is characterized by a preponderance
of holes (acceptors).

In discussing ionization of donors (and acceptors), we assumed that the temperature is
sufficiently high so that all of these are ionized. This is certainly true at room temper-
ature. But if the temperature is progressively lowered, a point is reached at which the
thermal energy becomes too small to cause electron excitation. In that case, the elec-
trons fall from the CB into the donor level, and the conductivity of the sample diminishes
dramatically. This is referred to as freeze-out, in that the electrons are now “frozen” at
their impurity sites. We can estimate the temperature at which freeze-out takes place
from the equation Ed ' kBT , which gives a temperature of about 100 K.

Figure 11: Variation of electron concentration with T in an n-type semiconductor [2].

The variation of the electron concentration with temperature in an n-type sample is
indicated schematically in Fig. 11, in which the various regions –freeze-out, extrinsic,
intrinsic –are clearly marked.
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