# Formation of energy band

#### Dr Mohammad Abdur Rashid



Jashore University of Science and Technology

Dr Rashid, 2022

# Semiconductor





# Energy levels of electron in hydrogen atom

Electron energy (eV)



For electrons in an atom only a set of discrete energies is allowed.



## Formation of molecule

When two atoms are brought together

- Atomic energy levels split
- Molecular orbitals are formed





# Formation of solid - Lithium





# Formation of solid – Silicon crystal





6

# Covalent bonding of the silicon atom





## Excitation of electrons from VB to CB



Electronic Materials & Devices – Kasap



# Electron and Hole in intrinsic silicon

At room temperature there are approximately  $1.5 \times 10^{10}$  free carriers in 1 cm<sup>3</sup> of *intrinsic* silicon.







# Electron and Hole in intrinsic silicon

At room temperature there are approximately  $1.5 \times 10^{10}$  free carriers in 1 cm<sup>3</sup> of *intrinsic* silicon.







# Fluid motion in a glass tube

- Half filled band
- Good electric conductors





- Completely full or completely empty band
- Poor electric conductors



Device Electronics for Integrated Circuits –Muller, Kamins, Chan



# Fluid motion in a glass tube

Fluid can move in both tubes if some of it is transferred from the filled tube to the empty one, leaving unfilled volume in the lower tube.

(a)(b)(c)(d)Device Electronics for Integrated Circuits –Muller, Kamins, Chan



The solids that are insulator at the temperature of 0 K but whose energy band gap is of such a size that thermal excitation leads to observable conductivity at temperature below its melting point are called semiconductor.



#### Extrinsic semiconductor



|     | IIIA | IVA | VA | VIA |
|-----|------|-----|----|-----|
|     | 5    | 6   | 7  | 8   |
|     | В    | С   | Ν  | 0   |
|     | 13   | 14  | 15 | 16  |
| IIB | AI   | Si  | Ρ  | S   |
| 30  | 31   | 32  | 33 | 34  |
| Zn  | Ga   | Ge  | As | Se  |
| 48  | 49   | 50  | 51 | 52  |
| Cd  | In   | Sn  | Sb | Те  |



#### Extrinsic semiconductor





## Electron versus Hole Flow





# Majority and Minority Carriers





# Energy band diagram



6

Σ

# Energy band diagram





# Two-dimensional view of the Si crystal



A two-dimensional pictorial view of the Si crystal showing covalent bonds as two lines where each line is a valence electron.

Electronic Materials & Devices – Kasap



# Arsenic-doped Si crystal





# Boron-doped Si crystal



Electronic Materials & Devices – Kasap



#### Strong and weak donors and acceptors





24

# The effective mass

The effective mass is a quantum mechanical quantity that behaves in the same way as the inertial mass in classical mechanics.

$$m_e^* = \frac{F_{\text{ext}}}{a_{\text{crystal}}}$$

|                                                            |                              | Germanium | Silicon | GaAs  |
|------------------------------------------------------------|------------------------------|-----------|---------|-------|
| Smallest energy bandgap at<br>300 K                        | $E_g$ (eV)                   | 0.66      | 1.12    | 1.424 |
| Electron effective mass for density of states calculations | $\frac{m^*_{e,dos}}{m_0}$    | 0.55      | 1.08    | 0.067 |
| Hole effective mass for density of states calculations     | $rac{m_{h,dos}^{*}}{m_{0}}$ | 0.37      | 0.811   | 0.45  |
| Electron effective mass for conductivity calculations      | $\frac{m_{e,cond}^*}{m_0}$   | 0.12      | 0.26    | 0.067 |
| Hole effective mass for conductivity calculations          | $\frac{m_{h,cond}^*}{m_0}$   | 0.21      | 0.386   | 0.34  |

Semiconductor Devices – Zeghbroeck



## The effective mass

|           | Si   | Ge   | GaAs  | InAs  | AlAs |
|-----------|------|------|-------|-------|------|
| $m_n/m_0$ | 0.26 | 0.12 | 0.068 | 0.023 | 2.0  |
| $m_p/m_0$ | 0.39 | 0.30 | 0.50  | 0.30  | 0.3  |

Electron and hole effective masses,  $m_n$ and  $m_p$ , normalized to the free electron mass



Both electrons and holes tend to seek their lowest energy positions. Electrons tend to fall in the energy band diagram. Holes float up like bubbles in water.

Modern Semiconductor Devices for Integrated Circuits – C. Hu

