Dr Mohammad Abdur Rashid

Electric current is due to movement of charge carriers:

$$I = \sum_{i} q v_i$$

Semiconductor has:

- partially filled CB
- partially empty VB

Conduction band – almost empty, relatively small number of electrons move and conduct electricity

$$I_{\rm CB} = \sum_{\substack{\text{all electrons} \\ \text{in CB}}} (-q)v_i$$

$$q = 1.6 \times 10^{-19} \,\mathrm{C}$$

Valance band – almost full, very large small number of electrons move and conduct electricity

$$I_{\rm VB} = \sum_{\substack{\text{filled ststes} \\ \text{in VB}}} (-q)v_i$$

Simpler description is to treat the relatively small number of empty states as positively charged particles called Hole.

Valance band:

$$I_{\mathrm{VB}} = \sum_{\substack{\mathrm{filled \ ststes} \\ \mathrm{in \ VB}}} (-q)v_i$$

$$= \sum_{\substack{\mathrm{all} \\ \mathrm{states}}} (-q)v_i - \sum_{\substack{\mathrm{empty} \\ \mathrm{states}}} (-q)v_i$$

$$= \sum_{\substack{\mathrm{empty} \\ \mathrm{states}}} (+q)v_i$$

- Any motion of free carriers leads to a current.
- In a semiconductor, there are two types of carriers:
 - Electron and hole
- Carrier motion may be caused by
 - Electric field : drift current
 - Non-uniform carrier concentration: diffusion
- Assume carriers move at an average velocity of v then the current is given by

$$I = \frac{Q}{t} = \frac{Q}{L/v};$$
 $J = \frac{I}{A} = \frac{Q}{AL} v = \rho v = -qnv$

- In order to know how much current flows in a semiconductor, we need to know:
 - How many carriers are there in each band?
 - How fast are the moving?
- To answer the first question, we need to know
 - How many available states are there in the conduction band?
 - What is the probability to find an electron in a given state?

How many available states are there in the conduction band?

Density of states

What is the probability to find an electron in a given state?

Fermi-Dirac probability function

Density of states

- Energy bands: A number of closely-spaced energy levels
- Density of states, g(E):
 - -g(E) is the number of states per unit volume per energy
 - g(E) dE is the number of states per unit volume between an infinitesimal energy range between E and dE

$$g(E) \equiv \frac{\text{number of states in } \Delta E}{\Delta E \times \text{volume}}$$

Density of states

$$g(E) = \frac{1}{2\pi^2} \left(\frac{2m^*}{\hbar^2}\right)^{3/2} E^{1/2}$$

 m^* is the effective mass

Elementary Solid State Physics – Ali Omar

Fermi-Dirac probability function

The Fermi-Dirac distribution f gives the probability that an orbital at energy E will be occupied by an ideal electron in thermal equilibrium.

$$f(E) = \frac{1}{e^{(E - E_F)/k_B T} + 1}$$

 E_F is the Fermi-energy

Electron Concentration

The electron concentration *n* in thermal nonequilibrium is expressed as

$$n = \int_0^\infty g(E) f(E) \, \mathrm{d}E$$

Fermi energy

Fermi energy is often defined as the highest occupied energy level of a material at absolute zero temperature. In other words, all electrons in a body occupy energy states at or below that body's Fermi energy at 0 K.

Energy level diagrams

Fermi energy in an insulator

$$n = \int_0^\infty g(E)f(E) \, \mathrm{d}E$$

$$n = \int_0^{E_F} g(E) dE$$

$$E_F = \frac{\hbar^2}{2m^*} \left(3\pi^2 n\right)^{2/3}$$