Intrinsic and extrinsic semiconductors

Dr Mohammad Abdur Rashid

Jashore University of Science and Technology

Dr Rashid, 2023

Energy Bands for Solids

Semiconductor

Semiconductor

Semiconductor	InSb	GaAs	GaP	ZnSe
<i>E</i> g (eV)	0.18	1.42	2.25	2.7

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$

 $E = k_B T$

300 K ≈ 0.026 eV

Jashore University of Science and Technology

ChemistryLearner.com

Crystal Silicon

Silicon ingot

Silicon wafers

Modern Semiconductor Devices for Integrated Circuits – C. Hu

Covalent bonding of the silicon atom

Excitation of electrons from VB to CB

Electronic Materials & Devices – Kasap

Electron and Hole in intrinsic silicon

At room temperature there are approximately 1.5×10^{10} free carriers in 1 cm³ of *intrinsic* silicon.

Electronic Devices and Circuit Theory – Boylestad, Nashelsky

Electron and Hole in intrinsic silicon

At room temperature there are approximately 1.5×10^{10} free carriers in 1 cm³ of *intrinsic* silicon.

Electronic Devices and Circuit Theory – Boylestad, Nashelsky

Electron and Hole in intrinsic silicon

Electronic Devices and Circuit Theory – Boylestad, Nashelsky

The external causes include effects such as light energy in the form of photons and thermal energy (heat) from the surrounding medium.

At room temperature there are approximately 1.5×10^{10} free carriers in 1 cm³ of *intrinsic* silicon.

Fluid motion in a glass tube

- Half filled band
- Good electric conductors

- Completely full or completely empty band
- Poor electric conductors

 (a)
 (b)
 Device Electronics for Integrated Circuits Muller, Kamins, Chan

 Isobore University of Science and Technology

Extrinsic semiconductor

Electronic Devices and Circuit Theory – Boylestad, Nashelsky

	IIIA	IVA	VA	VIA
	5	6	7	8
	В	С	Ν	0
	13	14	15	16
IIB	AI	Si	Ρ	S
30	31	32	33	34
Zn	Ga	Ge	As	Se
48	49	50	51	52
Cd	In	Sn	Sb	Те

Extrinsic semiconductor

Electron versus Hole Flow

Electronic Devices and Circuit Theory – Boylestad, Nashelsky

Majority and Minority Carriers

Electronic Devices and Circuit Theory – Boylestad, Nashelsky

Energy band diagram

Energy band diagram

Two-dimensional view of the Si crystal

A two-dimensional pictorial view of the Si crystal showing covalent bonds as two lines where each line is a valence electron.

Electronic Materials & Devices – Kasap

Arsenic-doped Si crystal

Jashore University of Science and Technology

Boron-doped Si crystal

Electronic Materials & Devices – Kasap

Strong and weak donors and acceptors

The effective mass

The effective mass is a quantum mechanical quantity that behaves in the same way as the inertial mass in classical mechanics.

$$m_e^* = \frac{F_{\text{ext}}}{a_{\text{crystal}}}$$

		Germanium	Silicon	GaAs
Smallest energy bandgap at 300 K	E_g (eV)	0.66	1.12	1.424
Electron effective mass for density of states calculations	$\frac{m^*_{e,dos}}{m_0}$	0.55	1.08	0.067
Hole effective mass for density of states calculations	$\frac{m_{h,dos}^*}{m_0}$	0.37	0.811	0.45
Electron effective mass for conductivity calculations	$rac{m_{e,cond}^{*}}{m_{0}}$	0.12	0.26	0.067
Hole effective mass for conductivity calculations	$\frac{m_{h,cond}^*}{m_0}$	0.21	0.386	0.34

Semiconductor Devices – Zeghbroeck

The effective mass

	Si	Ge	GaAs	InAs	AlAs
m_n/m_0 m_n/m_0	0.26 0.39	0.12 0.30	0.068 0.50	0.023 0.30	2.0 0.3
<i>mp</i> m0	0.37	0.20	0.20	0.20	0.2

Electron and hole effective masses, m_n and m_p , normalized to the free electron mass

Both electrons and holes tend to seek their lowest energy positions. Electrons tend to fall in the energy band diagram. Holes float up like bubbles in water.

Modern Semiconductor Devices for Integrated Circuits – C. Hu

