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Potential Step




The potential step
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The potential step: (a) Case E >V,

d2
(dx2 k%) wi(x) =0  (x <0)

d2
(dx2 | k%) p2(x) =0 (x =20)

where k% = 2mE /h?
and k3 = 2m(E — Vy)/h*.




The potential step: (a) Case E >V,

wl(x) — Aeiklx _l_Be—iklx

ikyx

wa(x) = Ce




The potential step: (a) Case E >V,

The probability current density (probability flux)

j= 1ﬁ()f) dyr™ (x )]
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The potential step: (a) Case E >V,

et us now evaluate the reflection and transmission coefficients,
R and T, as defined by

P reflected current density Jreflected
| incident current density | Tincident
T — Jtransmitted
Ji ncident




The potential step: (a) Case E >V,

Since the incident wave 1s y;(x) = Ae'rx

ih dy’(x) L, dyi(x hk
Jincident = (V/i(x) : Wi (x) yil )) — I‘A‘z

2m dx ’ dx m




The potential step: (a) Case E >V,

Similarly, since the reflected and transmitted waves are
W, (x) = Be 1* and y, (x) = Ce'*¥,

we can verify that the reflected and transmitted fluxes are

ik

2 2
Jreflected — |B|~, Jtransmitted = |C]"
m m




The potential step: (a) Case E >V,

R _ | B|? T_kz C|°
AP k4]

Thus, the calculation of R and T is reduced to determining
the constants B and C . For this, we need to use the boundary

conditions of the wave function at x = 0.
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The potential step: (a) Case E >V,

Since both the wave function and its first derivative are
continuous at x = 0,

w1(0) = y2(0), O _ dW(O),

dx dx

wi(x) = Ae'M¥ 4 Be~ih¥ (x < 0)
pa(x) = Ce'™* (x > 0)




The potential step: (a) Case E >V,

w(x) = AeM* 4 Be~ihix (x < 0)

wa(x) = Ce'*2” (x > 0)
4+ B = C, k(A — B) = kC
B:h_bm c=_M_ 4
k1 + ko k1 + k»




The potential step: (a) Case E >V,

The constant A, 1t can be determined from the normalization
condition of the wave function, but we don’t need It here,
since R and T are expressed in terms of ratios

(k1 — k2)2 (1 — }C)2 T 4k1ko 41C
(it hk)? 1+ K% (ki +k)? (14 K)?

where C = ky/ ki = /1 — Vo /E.

The sum of R and T is equal to 1, as it should be.




The potential step: (a) Case E >V,

(k1 —k)?> (1 —=K)? . 4k 1 ks 41C
(ki +k)? 1+ K% (ki +k)? 1+ K)?

where IC = ky/ ki = /1 — W/ E.

As E gets smaller and smaller, T also gets smaller and smaller
so that when E = V|, the transmission coefficient T becomes
zero and R = 1. On the other hand, when £ > ¥V, we have

K =J1—=Vy/E ~ 1;henceR=0and T = 1.




The potential step: (a) Case E >V,

|l (x)|?
A

A =21/ k

Ay =21/ ko




The potential step
Vix) 4

0, x <0,
V' (x) :{ Vo, x > 0.
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The potential step: (b) Case E <V,

Classically, the particles arriving at the potential step from the
left (with momenta p = /2mE ) will come to a stop at x =0
and then all will bounce back to the left with the magnitudes
of their momenta unchanged. None of the particles will make
It Into the right side of the barrier x = 0; there Is total
reflection of the particles. So the motion of the particles Is
reversed by the potential barrier.

Quantum mechanically, the picture will be somewhat different.




The potential step: (b) Case E <V,

d2
( | k%) pyi(x) =0  (x <0)

dx?

d? )
( ks ) w2(x) =0 (x >0),

dx?

where k% = 2mE /h?
k,> =2m(Vo — E) />




The potential step: (b) Case E <V,

Wl(-x) — Aeiklx _l_Be—iklx

po(x) = Ce™ho*

2im dx

7i dy(x dy:(x
Jtransmitted = —— (l//r(x) Vgx(' ) l//f(x) ’;Ut( )) — (|




The potential step: (b) Case E <V,

\We can obtain

B_kl—ikéA C — 2k 4
k1 + iké ’ k1 + l'ké
Thus, the reflected coefficient is given by
| B 2 k% k’% Total reflection,
R = 5 — 5 5 = 1. as in the
| A kl -+ k/2 classical case




The potential step: (b) Case E <V,

There 1s, however, a difference with the classical case: while none of
the particles can be found classically in the region x > (0, quantum
mechanically there Is a nonzero probability that the wave function
penetrates this classically forbidden region. To see this, note that the
relative probability density

2

P(x) = |y (x)]* = |C|Pe 2

IS appreciable near x = 0 and falls exponentially to small values as x
becomes large.
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The potential step: (b) Case E <V,

V(x)

|y ()|




The potential step
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Tunnelling through a Potential Barrier




The potential barrier
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The potential barrier: (a) Case E >V,

V(x)

A V(x) 4

X >
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The potential barrier: (a) Case E >V,

w1(x) = Aetkix o Be_iklx, x <0,
w(x) =4 wa(x) = Ce™2* 4+ De7 2 (0 <x <a,
w3(x) = Ee'M1*, X >a,

where k; = \/ZmE/hz and kp = \/Qm(E — Vo) /B2
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The potential barrier: (a) Case E >V,

V(x)

| (x)]?

E > 1)




The potential barrier: (a) Case E >V,

The constants B, C, D, and E can be obtained in terms of A from
the boundary conditions: w (x) and dw /dx must be continuous at
X =0 and x =a, respectively:

(0 = po), O _ dya0)

dx dx
d d
p@) = prta),  DED )




The potential barrier: (a) Case E >V,
A+ B =C+ D, ik1(4— B) =iky(C — D),

Ceikza + De—ikza _ Eeikla, ik (Cesza . De—ikza) _ iklEefkla.

Solving for E, we obtain

E = A4kikpyAde ™M (k) + ky)? 724 — (k) — ky)? €297}

—1
— 4k1k2Ae_l 14 [4k1k2 cos(kra) — 2i (k% + k%) Siﬂ(kza)]




The potential barrier: (a) Case E >V,

The transmission coefficient Is thus given by

- - -1

2
ki|E|? L (kI —-k\ .,
= =14+ - k

k1| Al + 4 ( k1k» sin” (k2a)

2
k2_k2 VZ
( lklkzz) :E(EﬂVO) l:a\/2mV0/k2and8:E/Vo




The potential barrier: (a) Case E >V,

— i | 1 .2 _ 1™
T = _1 rrp— sin”(A+/€ 1)_
sin(A+/e — 1) I 4e(e —1) 17!
R = = |1+ |
4e(e — 1) +sin(AVe—=1) | sin?(A/e —=1)_




The potential barrier: (a) Case E >V,

Tg(e)




The potential barrier: (a) Case E >V,

Special cases

o If £ > V), and hence ¢ > 1, the transmission coefficient 7 becomes asymptotically
equal to unity, 77 >~ 1, and R ~ 0. So, at very high energies and weak potential barrier,
the particles would not feel the effect of the barrier; we have total transmission.

e In the limit ¢ — 1 we have sin(A+/& — 1) ~ A/ — 1, hence (4.44) and (4.45) become
27, N ~1 2 \"!
ma“ Vv 2h
T=11+ : R={1+ :
( 212 ) ( ma? Vg)




The potential barrier
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The potential barrier




The potential barrier
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The potential barrier: (b) Case E <V,

Vi(x)
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4 |l//(x)|2
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The potential barrier: (b) Case E <V,

w1 (x) = Aetf1x 4 Be~thix - x <0,
w(x) =1 walx) = Ce2* + De™ ¥ 0 <x <a,
p3(x) = Eef1*, X >a,

where k¥ = 2mE/h* and k3 = 2m(Vy — E)/h*.




The potential barrier: (b) Case E <V,

The continuity conditions of the wavefunction and its derivative
atx=0and x=avyield

A+B = C+D,
ikj(A— B) = ky(C = D),
Cekza_l_De—kza _ Eeikla,

k> (Cekza — De_kza) ik Eek1e.




The potential barrier: (b) Case E <V,

With some calculations the coefficients R and T become

212\ 212\
R = L—=2 ) sinh®(kya) | 4 cosh?(kya) 21 ) sinh?(kya)
k1k> kiko
|E’|2 4 _4 hZ(k ) | k% _k% 2 - h2(k )_ _1
= |A|2 = COS 2a) kil S1n 2d




The potential barrier: (b) Case E <V,

We can rewrite R 1n terms of 7" as

2
1 [k + k2
R — ZT( 1klk22) sinh? (kya).

Since cosh?(kza) = 1 + sinh?(kza) we can write

— 5 — —1

1 [ k2 + k3
T=|1+-(—-—=) sinh’*(k
-I-4( . ) sinh”(kpa)




The potential barrier: (b) Case E <V,
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The potential barrier: (b) Case E <V,

T
R =
4e(1 — &)

sinh? (,1\/ [ — g) |

_ | - —1
7T = |14 'nhz(l [ — )
48(1—8)Sl v ¢




The Tunneling Effect

The tunneling effect consists of the propagation of
a particle through a region where the particle’s
energy Is smaller than the potential energy.
Classically this region Is forbidden to the particle
where its Kkinetic energy would be negative.
Quantum mechanically, however, since particles
display wave features, the quantum waves can
tunnel through the barrier.
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The Tunneling Effect
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Problem 4.1
A particle moving in one dimension is in a stationary state whose wave function

0, X < —a,
w(x)=1 A(1+cos=*), —a<x <a,
0, X > a,

where A4 and a are real constants.
(a) Is this a physically acceptable wave function? Explain.
(b) Find the magnitude of 4 so that y (x) i1s normalized.

(c) Evaluate Ax and Ap. Verify that AxAp > 7/2.
(d) Find the classically allowed region.




