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Classification of solids

Solids are broadly classified into two types
crystalline solids and amorphous solids.
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Unit cell

The Simplest Repeating Unit in a Crystal

The simplest repeating unit in a crystal is called
a unit cell. Each unit cell is defined in terms

of lattice points, the points in space about which
the particles are free to vibrate in a crystal.
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Crystal Systems and Bravais Lattice
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Bravais Lattice
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Bravais lattice

A Bravais lattice, studied by Auguste Bravais (1850), is an infinite array
of discrete points in three dimensional space generated by a set of
discrete translation operations described by:

—

R = 72/151 + TZQC?Q -+ ngag

Where n; are any integers and @; are known as the primitive vectors
which lie in different directions and span the lattice. This discrete set
of vectors must be closed under vector addition and subtraction. For
any choice of position vector R, the lattice looks exactly the same.




2D Crystal

¢ & ¢ ¢ ¢ 9

¢ ¢ ¢ ¢ v 9

—

niap -+ Nads

|
TS

@ & & & & @
¢ & & %

© <« ««H

- O «=H

¢ & & & ¢ @

(%5 Jashore University of



2D Crystal
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Bravais lattice

A Bravais lattice, studied by Auguste Bravais (1850), is an infinite array
of discrete points in three dimensional space generated by a set of
discrete translation operations described by:

—

R = 72/151 + TZQC?Q -+ ngag

Where n; are any integers and @; are known as the primitive vectors
which lie in different directions and span the lattice. This discrete set
of vectors must be closed under vector addition and subtraction. For
any choice of position vector R, the lattice looks exactly the same.




Bravais lattice in 3D

Simple cubic Body - centred cubic Face - centred cubic
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Primitive lattice vector of sc system
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Primitive lattice vector of fcc system
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Primitive lattice vector of fcc system
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Primitive lattice vector of fcc system
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Primitive lattice vector of bcc system
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Primitive lattice vector of bcc system
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Conventional Unit Cell

A non-primitive unit cell is conventionally
chosen for convenience. Typically, these unit
cells have a few times the volume of the
primitive cell. They can fill space without
overlaps and gaps through translational
vectors which are sums of multiples of lattice
constants. Conventionally, lattice points are
assumed to occupy corners of the
parallelepiped cells.
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Primitive lattice cell

The parallelepiped defined by primitive axes @y, do, a3 are
called a primitive cell. A primitive cell is a minimum-volume cell.
The cell will fill all the space by the repetition of suitable crystal
translation operation. There are many ways of choosing the
primitive axes and primitive cell for a given lattice.

The volume of a parallelepiped with axes a1, @9, a3 is
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3D view
showing the
number of
atoms per
unit cell

(a) Simple cubic (b) Body-centered cubic (c) Face-centered cubic




3D view of cubic crystal system
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Atomic packing factor (APF) or packing fraction

Atomic packing factor (APF) or packing fraction Is the
fraction of volume in a crystal structure that is occupied by
constituent particles. It Is a dimensionless quantity and
always less than unity. In atomic systems, by convention,
the APF Is determined by assuming that atoms are rigid
spheres. The radius of the spheres Is taken to be the
maximum value such that the atoms do not overlap.
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Atomic packing factor (APF) or packing fraction

[ ] [ ]
. v.partl(:le ’ particle
APF =

unit cell

Noarticie 1S the number of particles in the unit cell,
Vparticle 1S the volume of each particle,
Vnit cent 1S the volume occupied by the unit cell




Atomic packing factor (APF) or packing fraction

Simple cubic
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Atomic packing factor (APF) or packing fraction

Face-centered cubic
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Atomic packing factor (APF) or packing fraction

Body-centered cubic
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Characteristics of cubic lattices

Simple Body-centered Face-centered
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Volume, conventional cell a’ @ a’
Lattice points per cell 1 2 4
Volume, primitive cell a 3a° i
Lattice points per unit volume l/a® 2/’ 4/a®
Number of nearest neighbors 6 8 12
Nearest-neighbor distance a 3" a/2 = 0.866a a/2V? = 0.707a
Number of second neighbors 12 6 6
Second neighbor distance 2% a a
Packing fraction* & V3 emV2

=0.524 =(.680 =(.740




Wigner-Seitz cell
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Brillouin zone . .
https://demonstrat

ions.wolfram.com/ . .
2DBrillouinZones/

o} tashore Universty of Scence and Technology " brRashia 2005




Brillouin zone
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Wigner-Seitz cell

Face Centered Cubic Body Centered Cubic
Wigner-Seitz Cell Wigner-Seitz Cell




Bravais lattice |R = niay + noas + nads

Reciprocal Lattice | K = mqb; + mobs + msbs
The reciprocal lattice P (o X 03
represents the Fourier L= W@’l (dy X ds)
;c;ftri\ziorm of the Bravais i — o Ts X @
: (o - (5;3 X 61)
The reciprocal lattice to an fcc lattice T iy X G
is the bcc lattice and vice versa. a3 - (1 X do)




Brillouin zone
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Crystal structure

basis + lattice = crystal structure
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Crystal structure




Crystal structure
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Crystal structure




Crystal structure

Crystalline
quartz (SiO,)
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Miller Indices

The Miller indices of a lattice plane are the

3¢ k coordinates of the shortest reciprocal lattice
5; vector normal to the plane, with respect to a
7{ specific set of primitive reciprocal lattice
= | vectors. Thus a plane with Miller indices (h k |),
= is normal to the reciprocal lattice vector
e — — —
= hby + kby + 1b3

Miller indices are used to specify directions and planes.




The rules for Miller Indices:

*Determine the intercepts of the face along the crystallographic
axes, in terms of unit cell dimensions.

. 3c k
*Take the reciprocals N
*Clear fractions =
*Reduce to lowest terms =
1.1.1 .. =
(1,2,3) = (7:3:3) = (6:3:2) = (632)| | » ;[
— ! 9
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Miller Indices

Miller Indices are the reciprocals of the parameters of each crystal face.
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Miller Indices
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Miller Indices
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Draw your own lattice planes

Enter Miller indices (index max 6), e.g. |1;1;1 View (111)
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https://www.doitpoms.ac.uk/tlplib/miller_indices/lattice_draw.php




Crystal Defects
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Point defects in a crystal. (a) Vacancy. (b) Interstitial.
(¢) Substitutional impurity. (d) Interstitial jmpurity_

Concepts of Modern Physics — Arthur Beiser




Crystal Defects

Dislocation
line ¢ )

T A screw dislocation.

Concepts of Modern Physics — Arthur Beiser




Crystal Defects
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Crystal Defects

Sorew Dislocation

Edge Dislocation
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