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Electrical
and
Thermal Conduction

in Solids

Electrical conduction involves the motion of charges in a material under the influence
of an applied electric field. A material can generally be classified as a conductor if it
contains a large number of “free” or mobile charge carriers. In metals, due to the na-
ture of metallic bonding, the valence electrons from the atoms form a sea of electrons
that are free to move within the metal and are therefore called conduction electrons. In
this chapter, we will treat the conduction electrons in metal as “free charges” that can
be accelerated by an applied electric field. In the presence of an electric field, the con-
duction electrons attain an average velocity, called the drift velocity, that depends on
the field, By applying Newton’s second law to electron motion and using such con-
cepts as mean free time between electron collisions with lattice vibrations, crystal de-
fects, impurities, etc., we will derive the fundamental equations that govern electrical
conduction in solids. A key concept will be the drift mobility, which is a measure of the
ease with which charge carriers in the solid drift under the influence of an external
electric field.

Good electrical conductors, such as metals, are also known to be good thermal
conductors. The conduction of thermal energy from higher to lower temperature re-
gions in a metal involves the conduction electrons carrying the energy. Consequently,
there is an innate relationship between the electrical and thermal conductivities, which
is supported by theory and experiments.
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CHAPTER 2 ¢ ELECTRICAL AND THERMAL CONDUCTION IN SOLIDS

2.1 CLASSICAL THEORY: THE DRUDE MODEL

2.1.1 METALS AND CONDUCTION BY ELECTRONS

The electric current density J is defined as the net amount of charge flowing across a
unit area per unit time, that is,

A
J==2
A At

where Agq is the net quantity of charge flowing through an area A in time Az. Figure 2.1
shows the net flow of electrons in a conductor section of cross-sectional area A in the
presence of an applied field E,. Notice that the direction of electron motion is opposite
to that of the electric field Z, and of conventional current, because the electrons experi-
ence a Coulombic force eZ, in the x direction, due to their negative charge.

We know that the conduction electrons are actually moving around randomly’ in
the metal, but we will assume that as a result of the application of the electric field Z,,
they all acquire a net velocity in the x direction. Otherwise, there would be no net flow
of charge through area A.

The average velocity of the electrons in the x direction at time ¢ is denoted v, (7).
This is called the drift velocity, which is the instantaneous velocity v, in the x direc-
tion averaged over many electrons (perhaps, ~102 m™3); that is

1
Vay = -A—,[le + vy2 + Ux3 + -+ U] [2.1]
L ]

where v,; is the x direction velocity of the ith electron, and N is the number of
conduction electrons in the metal. Suppose that » is the number of electrons per unit
volume in the conductor (n = N/V). In time At, electrons move a distance
Ax = vy, At, so the total charge Ag crossing the area A is enA Ax. This is valid
because all the electrons within distance Ax pass through A; thus, n(A Ax) is the total
number of electrons crossing A in time At.

The current density in the x direction is

_ Ag _ enAvy, At
T AAtT AAr
This general equation relates J, to the average velocity vy, of the electrons. It must be
appreciated that the average velocity at one time may not be the same as at another
time, because the applied field, for example, may be changing: £, = E,(r). We there-
fore allow for a time-dependent current by writing

Je(t) = envg,(t) [2.2]

To relate the current density J, to the electric field Z,, we must examine the effect
of the electric field on the motion of the electrons in the conductor. To do so, we will
consider the copper crystal.

x = envyy

! All the conduction electrons are “free” within the metal and move around randomly, being scattered from vibrating
metal ions, as we discuss in this chapter.
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Figure 2.1 Drift of electrons in a
conductor in the presence of an applied
electric field.

Electrons drift with an average velocity vy
in the x direction.

The copper atom has a single valence electron in its 4s subshell, and this electron
is loosely bound. The solid metal consists of positive ion cores, Cut, at regular sites,
in the face-centered cubic (FCC) crystal structure. The valence electrons detach them-
selves from their parents and wander around freely in the solid, forming a kind of elec-
tron cloud or gas. These mobile electrons are free to respond to an applied field, creat-
ing a current density J,. The valence electrons in the electron gas are therefore
conduction electrons.

The attractive forces between the negative electron cloud and the Cu™ ions are re-
sponsible for metallic bonding and. the existence of the solid metal. (This simplistic
view of metal was depicted in Figure 1.7 for copper.) The electrostatic attraction be-
tween the conduction electrons and the positive metal ions, like the electrostatic attrac-
tion between the electron and the proton in the hydrogen atom, results in the conduction
electron having both potential energy PE and kinetic energy KE. The conduction elec-
trons move about the crystal lattice in the same way that gas atoms move randomly in a
cylinder. Although the average KE for gas atoms is %kT: this is not the case for electrons
in a metal, because these electrons strongly interact with the metal ions and with each
other as a result of electrostatic interactions.

The mean KE of the conduction electrons in a metal is primarily determined
by the electrostatic interaction of these electrons with the positive metal ions and
also with each other. For most practical purposes, we will therefore neglect the
temperature dependence of the mean KE compared with other factors that control
the behavior of the conduction electrons in the metal crystal. We can speculate
from Example 1.1, that the magnitude of mean KE must be comparable to the
magnitude of the mean PE of electrostatic interaction’ or, stated differently, to the
metal bond energy which is several electron volts per atom. If u is the mean speed
of the conduction electrons, then, from electrostatic interactions alone, we expect
im.u? to be several electron volts which means that u is typically ~10° m s~'. This
purely classical and intuitive reasoning is not sufficient, however, to show that the
mean speed u is relatively temperature insensitive and much greater than that
expected from kinetic molecular theory. The true reasons are quantum mechanical
and are discussed in Chapter 4. (They arise from what is called the Pauli exclusion
principle.)

2There is a theorem in classical mechanics called the virial theorem, which states that for a collection of particles,
the mean KE has half the magnitude of the mean PE if the only forces acting on the particles are such that they
follow an inverse square law dependence on the particle-particle separation {as in Coulombic and gravitational
forces).
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CHAPTER 2 ¢ ELECTRICAL AND THERMAL CONDUCTION IN SOLIDS

Bhas £, B

(a) A conduction electron in the electron gas moves (b) In the presence of an applied field, ., there
about randomly in a metal (with a mean speed v} is a net drift along the x direction. This net drift
being fre uenr?)" and randomly scattered by along the force o? the field is superimposed on
thermal v%aroﬁons of the atoms. In the absence of the random motion of the electron. After many
an applied field there is no net drift in any direction.  scattering events the electron has been displaced

by a net distance, A x, from its initial position
toward the positive terminal.

Figure 2.2 Motion of a conduction electron in a metal.

In general, the copper crystal will not be perfect and the atoms will not be sta-
tionary. There will be crystal defects, vacancies, dislocations, impurities, etc., which
will scatter the conduction eltctrons. More importantly, due to their thermal energy,
the atoms will vibrate about their lattice sites (equilibrium positions), as depicted in
Figure 2.2a. An electron will not be able to avoid collisions with vibrating atoms;
consequently, it will be “scattered” from one atom to another. In the absence of an
applied field, the path of an electron may be visualized as illustrated in Figure 2.2a,
where scattering from lattice vibrations causes the electron to move randomly in the
lattice. On those occasions when the electron reaches a crystal surface, it becomes
“deflected” (or “bounced”) back into the crystal. Therefore, in the absence of a
field, after some duration of time, the electron crosses its initial x plane position
again. Over a long time, the electrons therefore show no net displacement in any one
direction.

When the conductor is connected to a battery and an electric field is applied to the
crystal, as shown in Figure 2.2b, the electron experiences an acceleration in the x
direction in addition to its random motion, so after some time, it will drift a finite dis-
tance in the x direction. The electron accelerates along the x direction under the action
of the force eE,, and then it suddenly collides with a vibrating atom and loses the
gained velocity. Therefore, there is an average velocity in the x direction, which, if cal-
culated, determines the current via Equation 2.2. Note that since the electron experi-
ences an acceleration in the x direction, its trajectory between collisions is a parabola,
like the trajectory of a golf ball experiencing acceleration due to gravity.

To calculate the drift velocity vy, of the electrons due to applied field E,, we first
consider the velocity v,; of the ith electron in the x direction at time z. Suppose its last
collision was at time ¢;; therefore, for time (¢ — ¢;), it accelerated free of collisions, as
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Velocity gained along x Present time Vx2 — 4x2 Vi3 = Uy3
Vel — Uxi

Last collision
Electron 2
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Figure 2.3 Velocity gained in the x direction at time t from the electric field (Z,) for three electrons.
There will be N electrons to consider in the metal.

indicated in Figure 2.3. Let u,; be the velocity of electron i in the x direction just after
the collision. We will call this the initial velocity. Since eZ,/m, is the acceleration of
the electron, the velocity v,; in the x direction at time ¢ will be

eE
(¢ — 1)

e

Uxi = Uyi +

However, this is only for the ith electron. We need the average velocity v, for all
such electrons along x. We average the expression fori = 1 to N electrons, as in Equa-
tion 2.1. We assume that immediately after a collision with a vibrating ion, the electron
may move in any random direction; that is, it can just as likely move along the nega-
tive or positive x, so that u,; averaged over many electrons is zero. Thus,

et —
-1

Vix = —l"[vxl + U+ F U] =
N me
where (¢ — ¢;) is the average free time for N electrons between collisions.

Suppose that 7 is the mean free time, or the mean time between collisions (also
known as the mean scattering time). For some electrons, (¢ — #;) will be greater than
7, and for others, it will be shorter, as shown in Figure 2.3. Averaging (¢ — ;) for N
electrons will be the same as t. Thus, we can substitute T for (+ — #;) in the previous
expression to obtain .

Vg = —E, [2.3]

Equation 2.3 shows that the drift velocity increases linearly with the applied field.
The constant of proportionality et/m, has been given a special name and symbol. It is
called the drift mobility u,4, which is defined as

Vax = MaEx [2.4]
where

et
Hg = — [2.5]
me
Equation 2.5 relates the drift mobility of the electrons to their mean scattering
time t. To reiterate, T, which is also called the relaxation time, is directly related to
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CHAPTER 2 ¢ ELECTRICAL AND THERMAL CONDUCTION IN SOLIDS

the microscopic processes that cause the scattering of the electrons in the metal; that is,
lattice vibrations, crystal imperfections, and impurities, to name a few.

From the expression for the drift velocity vy, the current density J, follows im-
mediately by substituting Equation 2.4 into 2.2, that is,

J, =enugyE, [2.6]

Therefore, the current density is proportional to the electric field and the conduc-
tivity o is the term multiplying Z,, that is,

o =enuy [2.7]

It is gratifying that by treating the electron as a particle and applying classical me-
chanics (F = ma), we are able to derive Ohm’s law. We should note, however, that we
assumed 7 to be independent of the field.

Drift mobility is important because it is a widely used electronic parameter in
semiconductor device physics. The drift mobility gauges how fast electrons will drift
when driven by an applied field. If the electron is not highly scattered, then the mean
free time between collisions will be long, T will be large, and by Equation 2.5, the
drift mobility will also be large; the electrons will therefore be highly mobile and be
able to “respond” to the field. However, a large drift mobility does not necessarily
imply high conductivity, because o also depends on the concentration of conduction
electrons n.

The mean time between collisions t has further significance. Its reciprocal 1/t
represents the mean frequency of collisions or scattering events; that is, 1/t is the
mean probability per unit time that the electron will be scattered (see Example 2.1).
Therefore, during a small time interval §¢, the probability of scattering will be &z/z.
The probability of scattering per unit time 1/t is time independent and depends only
on the nature of the electron scattering mechanism.

There is one important assumption in the derivation of the drift velocity vy, in
Equation 2.3. We obtained v,, by averaging the velocities v,; of N electrons along x
at one instant, as defined in Equation 2.1. The drift velocity therefore represents the
average velocity of all the electrons along x at one instant; that is, v,,'is a number av-
erage at one instant. Figure 2.2b shows that after many collisions, after a time interval
At > t, an electron would have been displaced by a net distance Ax along x. The
term Ax/At represents the effective velocity with which the electron drifts along x. It
is an average velocity for one electron over many collisions, that is, over a long time
(hence, At > 1), so Ax/At is a time average. Provided that Az contains many colli-
sions, it is reasonable to expect that the drift velocity Ax /At from the time average for
one electron is the same as the drift velocity v,, per electron from averaging for all
electrons at one instant, as in Equation 2.1, or

Ax
ar v
The two velocities are the same only under steady-state conditions (At > t). The
proof may be found in more advanced texts.
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PROBABILITY OF SCATTERING PER UNIT TIME AND THE MEAN FREE TIME If 1/7 is defined LU IVA]
as the mean probability per unit time that an electron is scattered, show that the mean time be-
tween collisions is 7.

SOLUTION

Consider an infinitesimally small time interval d¢ at time ¢. Let N be the number of unscattered
electrons at time ¢. The probability of scattering during d¢ is (1/t) dt, and the number of scat-
tered electrons during dt is N(1/t) dt. The change dN in N is thus

dN = —N(l) dt
T

The negative sign indicates a reduction in N because, as electrons become scattered, N de-
creases. Integrating this equation, we can find N at any time ¢, given that at time ¢ = 0, Ny is
the total number of unscattered electrons. Therefore,

: Unscattered
N =N, exp(— —) electron
t concentration
This equation represents the number of unscattered electrons at time ¢. It reflects an expo-
nential decay law for the number of unscattered electrons. The mean free time 7 can be calcu-
lated from the mathematical definition of 7,
P S tN dt _. Mean free
f0°° N dt time

where we have used N = Ny exp(—t/t). Clearly, 1/t is the mean probability of scattering per
unit time.

ELECTRON DRIFT MOBILITY IN METALS Calculate the drift mobility and the mean scattering [J3EV 1 3YW]
time of conduction electrons in copper at room temperature, given that the conductivity of copper
is5.9 x 10° Q7! cm™!. The density of copper is 8.96 g cm~ and its atomic mass is 63.5 gmol~'.

SOLUTION

We can calculate u, from o = enu, because we already know the conductivity o. The number
of free electrons n per unit volume can be taken as equal to the number of Cu atoms per unit
volume, if we assume that each Cu atom donates one electron to the conduction electron gas in
the metal. One mole of copper has N4 (6.02 x 10%) atoms and a mass of 63.5 g. Therefore, the
number of copper atoms per unit volume is

dN,
My
where d = density = 8.96 g cm™3, and M,, = atomic mass = 63.5 (g mol~!). Substituting for

d,N,,and M,,, we find n = 8.5 x 10?? electrons cm™3.
The electron drift mobility is therefore
g 59%x10°Q'cm™!
Ha = = 1(1.6 x 1019 C)(8.5 x 102 cm-3)]

=43.4cm? V-ls~!

n=
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From the drift mobility we can calculate the mean free time ¢ between collisions by using
Equation 2.5,
_ Mame _ (434 x 107 m? V71571)(9.1 x 107> kg) 25 10-"s
e 1.6 x 10~ C
Note that the mean speed u of the conduction electrons is about 1.5 x 10% m s™!, so that
their mean free path is about 37 nm.

30V 1J1P%Y DRIFT VELOCITY AND MEAN SPEED What is the applied electric field that will impose a drift

velocity equal to 0.1 percent of the mean speed u(~10% m s~!) of conduction electrons in
copper? What is the corresponding current density and current through a Cu wire of diameter
1 mm?

SOLUTION

The drift velocity of the conduction electrons is vy, = ©qEx, Where p4 is the drift mobility, which
for copper is 43.4 cm? V™! 57! (see Example 2.2). With vy, =0.001xz = 10° ms~!, we have

Vax 103ms™!

E = Yax _
T s #34x10-4m2V-lg!

=23x10°Vm™! or 230 kV m™!

This is an unattainably large electric field in a metal. Given the conductivity o of copper, the
equivalent current density is

Ji=0E=059%x107Q '"mHR3x10°Vm™)
=14x10% Am™? or 1.4 x 10" A mm™?

This means a current of 1.1 x 107 A through a 1 mm diameter wire! It is clear from this
example that for all practical purposes, even under the highest working currents and volt-
ages, the drift velocity is much smaller than the mean speed of the electrons. Consequently,
when an electric field is applied to a conductor, for all practical purposes, the mean speed is
unaffected.

WDRIFT VELOCITY IN A FIELD: A CLOSER LOOK There is another way to explain the observed

Distance
traversed
along x before
collision

dependence of the drift velocity on the field, and Equation 2.3. Consider the path of a conduc-
tion electron in an applied field £ as shown in Figure 2.4. Suppose that at time ¢ = 0 the elec-
tron has just been scattered from a lattice vibration. Let u,; be the initial velocity in the
x direction just after this initial collision (to which we assign a collision number of zero). We
will assume that immediately after a collision, the velocity of the electron is in a random direc-
tion. Suppose that the first collision occurs at time #,. Since eE, /m, is the acceleration, the dis-
tance s; covered in the x direction during the free time ¢, will be

1 e'f,,)z
S| = Ugt + = t
1 x1*1 2(me 1

At time ¢,, the electron collides with a lattice vibration (its first collision), and the velocity
is randomized again to become u,,. The whole process is then repeated during the next interval
which lasts for a free time ¢,, and the electron traverses a distance s, along x, and so on. To find
the overall distance traversed by the electron after p such scattering events, we sum all the




2.1 CLAsSSICAL THEORY: THE DRUDE MODEL 121
Electric field
2
Finish
p |
|
|
|
.
"
il Figure 2.4 The motion of a single
! electron in the presence of an electric
'I field . During a fime interval t,, the
€ 3 electron traverses a distance s; along x.
! s=Ax : After p collisions, it has drifted a distance
n Distance drifted in total time At s=AX.
above distances s, 53, . . . for p free time intervals,
1(eE\r, .2 2
s=s1+ S+t 5p = luaty +upt + -+ ugt,] + 3\ [t1 +t +~~+tp] [2.8]
[4
Since after a collision the “initial” velocity u, is always random, the first term has u, val-
ues that are randomly negative and positive, so for many collisions (large p) the first term on the
right-hand side of Equation 2.8 is nearly zero and can certainly be neglected compared with the
second term. Thus, after many collisions, the net distance s = Ax traversed in the x direction is
given by the second term in Equation 2.8, which is the electric field induced displacement term. .
If 2is the mean square free time, then Distance
drifted after p
= 1 (ﬂ) pt? scattering
2\ m, events
= 1
where =—[++ -+ tﬁ] Mean square
p ,
Suppose that 7 is the mean free time between collisions, where t = (¢, + t, + -+ +¢,)/p. free tf'f'e
Then from straightforward elementary statistics it can be shown that 2 = 2(f)? = 2t2. So in definition
terms of the mean free time t between collisions, the overall distance s = Ax drifted in the
x direction after p collisions is
e,
s = —(pt?)
me
Further, since the total time A¢ taken for these p scattering events is simpiy pt, the drift
velocity vy, is given by Ax /At ors/(pt), thatis,
Drift velocity
et
Vax = m—fx [2.9]1  and mean free
¢ time

This is the same expression as Equation 2.3, except that t is defined here as the average
free time for a single electron over a long time, that is, over many collisions, whereas previously
it was the mean free time averaged over many electrons. Further, in Equation 2.9 v,, is an
average drift for an electron over a long time, over many collisions. In Equation 2.1 v, is the
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average velocity averaged over all electrons at one instant. For all practical purposes, the two
are equivalent. (The equivalence breaks down when we are interested in events over a time
scale that is comparable to one scattering, ~10~'* second.)

The drift mobility x, from Equation 2.9 is identical to that of Equation 2.5, u, = et/m,.
Suppose that the mean speed of the electrons (not the drift velocity) is u. Then an electron
moves a distance ¢ = ut in mean free time r, which is called the mean free path. The drift
mobility and conductivity become,

el e’nt

and o =eni; =
meu mou

Mg = [2.10]

Equations 2.3 and 2.10 both assume that after each collision the velocity is randomized.
The scattering process, lattice scattering, is able to randomize the velocity in one single scatter-
ing. In general not all electron scattering processes can randomize the velocity in one scattering
process. If it takes more than one collision to randomize the velocity, then the electron is able to
carry with it some velocity gained from a previous collision and hence possesses a higher drift
mobility. In such cases one needs to consider the effective mean free path a carrier has to move
to eventually randomize the velocity gained; this is a point considered in Chapter 4 when we
calculate the resistivity at low temperatures.

22 TEMPERATURE DEPENDENCE OF RESISTIVITY:
IDEAL PURE METALS

When the conduction electrons are only scattered by thermal vibrations of the
metal ions, then T in the mobility expression us = et/m, refers to the mean tirpe
between scattering events by this process. The resulting conductivity apd rqsistivny
are denoted by o7 and pr, where the subscript T represents “thermal vibration scat-
tering.”

To find the temperature dependence of o, we first consider the‘ t.emperature
dependence of the mean free time , since this determines the drift mobility. An elec-
tron moving with a mean speed u is scattered when its path crosses t‘he Cross-
sectional area S of a scattering center, as depicted in Figure 2.5. The scattering center

Figure 2.5 Scattering of an electron from
the thermal vibrations of the atoms.

The electron travels a mean distance € = ur
between collisions. Since the scattering cross-
sectional area is S, in the volume S¢ there
must be at least one scatterer, N (Sut) = 1.

A vibrating
metal atom

Electron ©
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may be a vibrating atom, impurity, vacancy, or some other crystal defect. Since 7 is
the mean time taken for one scattering process, the mean free path £ of the electron
between scattering processes is ut. If N; is the concentration of scattering centers,
then in the volume S¢, there is one scattering center, that is, (Sut) Ny = 1. Thus, the
mean free time is given by

1
T =
SuN;

The mean speed u of conduction electrons in a metal can be shown to be only
slightly temperature dependent.® In fact, electrons wander randomly around in the
metal crystal with an almost constant mean speed that depends largely on their con-
centration and hence on the crystal material. Taking the number of scattering centers
per unit volume to be the atomic concentration, the temperature dependence of t then
arises essentially from that of the cross-sectional area S. Consider what a free electron
“sees” as it approaches a vibrating crystal atom as in Figure 2.5. Because the atomic
vibrations are random, the atom covers a cross-sectional area a2, where a is the am-
plitude of the vibrations. If the electron’s path crosses wa?, it gets scattered. Therefore,
the mean time between scattering events 7 is inversely proportional to the area wa?
that scatters the electron, that is, T oc 1/ma?.

The thermal vibrations of the atom can be considered to be simple harmonic
motion, much the same way as that of a mass M attached to a spring. The average
kinetic energy of the oscillations is Ma’w?, where  is the oscillation frequency.
From the kinetic theory of matter, this average kinetic energy must be on the order
of 3kT . Therefore,

[2.11]

Tpg 2.2 1
4Maa) sz

s0a? o« T. Intuitively, this is correct because raising the temperature increases the am-
plitude of the atomic vibrations. Thus,

1 1 Cc
TX — X — or T=—
a2 T T
where C is a temperature-independent constant. Substituting for 7 in u; = et/m,, we
obtain

eC

So, the resistivity of a metal is

3 The fact that the mean speed of electrons in a metal is only weakly temperature dependent can be proved from
what it called the Fermi-Dirac statistics for the collection of electrons in a metal (see Chapter 4). This result contrasts
sharply with the kinetic molecular theory of gases (Chapter 1), which predicts that the mean speed of molecules is
propfrrionol to ¥T. For the time being, we simply use a constant mean speed v for the conduction electrons in a
metal.
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that is,
pPr = AT [2.12]

where A is a temperature-independent constant. This shows that the resistivity of a pure metal
wire increases linearly with the temperature, and that the resistivity is due simply to the scatter-
ing of conduction electrons by the thermal vibrations of the atoms. We term this conductivity
lattice-scattering-limited conductivity.

TEMPERATURE DEPENDENCE OF RESISTIVITY What is the percentage change in the resistance
of a pure metal wire from Saskatchewan’s summer to winter, neglecting the changes in the di-
mensions of the wire?

SOLUTION
Assuming 20 °C for the summer and perhaps —30 °C for the winter, from R « p = AT, we have
Rsummer - Rwinter _ Tsummer - Twimer (20 + 273) - (_‘30 + 273)

Riummer T Taomer - (20 +273)
=0.171 or 17%

Notice that we have used the absolute temperature for 7. How will the outdoor cable power
losses be affected?

DRIFT MOBILITY AND RESISTIVITY DUE TO LATTICE VIBRATIONS Given that the mean speed
of conduction electrons in copper is 1.5 x 10 m s~! and the frequency of vibration of the cop-
per atoms at room temperature is about4 x 10'% s~!, estimate the drift mobility of electrons and
the conductivity of copper. The density d of copper is 8.96 g cm™* and the atomic mass M, is
63.56 g mol~!.

SOLUTION

The method for calculating the drift mobility and hence the conductivity is based on evaluating
the mean free time t via Equation 2.11, that is, ¢ = 1/SuN;. Since t is due to scattering from
atomic vibrations, N, is the atomic concentration,

dNs _ (8.96 x 10° kg m™)(6.02 x 10 mol~")
M, 63.56 x 10~3 kg mol !

=8.5x 10® m™3

N, =

The cross-sectional area S = wa? depends on the amplitude a of the thermal vibrations as
shown in Figure 2.5. The average kinetic energy KE,, associated with a vibrating mass M
attached to a spring is given by KE,, = jMa’w?, where w is the angular frequency of the
vibration (w = 274 x 10'2 rad s™!). Applying this equation to the vibrating atom and equating
the average kinetic energy KE,, to %kT, by virtue of equipartition of energy theorem, we have
a? = 2kT /M w? and thus

, 27kT 27 (1.38 x 1072 JK~')(300 K)

S=ma"= > = —
Mo (63.56 x 1073 kg mol

6.022 x 102 mol !

=3.9 x 1072 m?

)(271 x 4 x 10'2 rad s™1)?2
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Therefore,
IS 1
SuN;, (3.9 x 102 m?)(1.5 x 10 m s~ !)(8.5 x 1022 m~3)
=2.0x10""s
The drift mobility is
et (1.6 x 107 C)(2.0 x 107 15)
b= e = (9.1 x 10~ kg)

=35x10m?Vls ! =35cm?V-ls!

The conductivity is then
o =enpy = (1.6 x 107 C)(8.5 x 102 cm~)(35em?V~!s7h)
=48x10°Q 'em™!

The experimentally measured value for the conductivity is 5.9 x 10° Q™! cm™!, so our
crude calculation based on Equation 2.11 is actually only 18 percent lower, which is not bad for
an estimate. (As we might have surmised, the agreement is brought about by using reasonable
values for the mean speed # and the atomic vibrational frequency w. These values were taken
from quantum mechanical calculations, so our evaluation for T was not truly based on classical
concepts.)

125

23 MATTHIESSEN’S AND NORDHEIM’S RULES

23.1 MATTHIESSEN’S RULE AND THE TEMPERATURE
COEFFICIENT OF RESISTIVITY (&)

The theory of conduction that considers scattering from lattice vibrations only works
well with pure metals; unfortunately, it fails for metallic alloys. Their resistivities are
only weakly temperature dependent. We must therefore search for a different type of
scattering mechanism.

Consider a metal alloy that has randomly distributed impurity atoms. An electron
can now be scattered by the impurity atoms because they are not identical to the host
atoms, as illustrated in Figure 2.6. The impurity atom need not be larger than the host
atom; it can be smaller. As long as the impurity atom results in a local distortion of the
crystal lattice, it will be effective in scattering. One way of looking at the scattering
process from an impurity is to consider the scattering cross section. What actually
scatters the electron is a local, unexpected change in the potential energy PE of the
electron as it approaches the impurity, because the force experienced by the electron
is given by

_d(PE)

F =
dx

For example, when an impurity atom of a different size compared to the host atom is
placed into the crystal lattice, the impurity atom distorts the region around it, either by
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from thermal vibrations alone.

pushing the host atoms farther away, or by pulling them in, as depicted in Figure 2.6.
The cross section that scatters the electron is the lattice region that has been elastically
distorted by the impurity (the impurity atom itself and its neighboring host atoms), so
that in this zone, the electron suddenly experiences a force F = —d(PE)/dx due to a
sudden change in the PE. This region has a large scattering cross section, since the dis-
tortion induced by the impurity may extend a number of atomic distances. These impu-
rity atoms will therefore hinder the motion of the electrons, thereby increasing the
resistance.

We now effectively have two types of mean free times between collisions: one, 77,
for scattering from thermal vibrations only, and the other, 7,, for scattering from im-
purities only. We define 77 as the mean time between scattering events arising from
thermal vibrations alone and t; as the mean time between scattering events arising
from collisions with impurities alone. Both are illustrated in Figure 2.6.

In general, an electron may be scattered by both processes, so the effective mean
free time t between any two scattering events will be less than the individual scatter-
ing times 77 and t;. The electron will therefore be scattered when it collides with either
an atomic vibration or an impurity atom. Since in unit time, 1/7 is the net probability
of scattering, 1/tr is the probability of scattering from lattice vibrations alone, and
1/7; is the probability of scattering from impurities alone, then within the realm of
elementary probability theory for independent events, we have

1 1 1
—.+__

- = [2.13]
T T T

In writing Equation 2.13 for the various probabilities, we make the reasonable as-
sumption that, to a greater extent, the two scattering mechanisms are essentially inde-
pendent. Here, the effective mean scattering time 7 is clearly smaller than both rr and
;. We can also interpret Equation 2.13 as follows: In unit time, the overall number of
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collisions (1/7) is the sum of the number of collisions with thermal vibrations alone
(1/zr) and the number of collisions with impurities alone (1/t;).

The drift mobility u4 depends on the effective scattering time t via ug = et/m,,
so Equation 2.13 can also be written in terms of the drift mobilities determined by the
various scattering mechanisms. In other words,

1 1 1

— [2.14]
Hd 1495 H“r

where p, is the lattice-scattering-limited drift mobility, and «, is the impurity-
scattering-limited drift mobility. By definition, u; = ety/m, and u; = et;/m.,.
The effective (or overall) resistivity p of the material is simply 1/enu 4, or
1 1 1
+

enpg enjup  enuj

which can be written
o =pr+pr [2.15]

where 1/enu is defined as the resistivity due to scattering from thermal vibrations,
and 1/enpu is the resistivity due to scattering from impurities, or
1 1

and pr =
enur enu;

PT =

The final result in Equation 2.15 simply states that the effective resistivity p is the
sum of two contributions. First, or = 1/enu is the resistivity due to scattering by ther-
mal vibrations of the host atoms. For those near-perfect pure metal crystals, this is the
dominating contribution. As soon as we add impurities, however, there is an additional
resistivity, p; = 1/enu;, which arises from the scattering of the electrons from the im-
purities. The first term is temperature dependent because 77 o« T ! (see Section 2.2),
but the second term is not.

The mean time 7; between scattering events involving electron collisions with im-
purity atoms depends on the separation between the impurity atoms and therefore on
the concentration of those atoms (see Figure 2.6). If £, is the mean separation between
the impurities, then the mean free time between collisions with impurities alone will be
£;/u, which is temperature independent because £; is determined by the impurity con-
centration N; (i.e., £; = N,_l/ 3), and the mean speed of the electrons u is nearly con-
stant in a metal. In the absence of impurities, 7, is infinitely long, and thus p; = 0. The
summation rule of resistivities from different scattering mechanisms, as shown by
Equation 2.15, is called Matthiessen’s rule.

There may also be electrons scattering from dislocations and other crystal defects,
as well as from grain boundaries. All of these scattering processes add to the resistiv-
ity of a metal, just as the scattering process from impurities. We can therefore write the
effective resistivity of a metal as

o = pr+ pr [2.16]
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where pp is called the residual resistivity and is due to the scattering of electrons by
impurities, dislocations, interstitial atoms, vacancies, grain boundaries, etc. (which
means that pg also includes p;). The residual resistivity shows very little temperature
dependence, whereas pr = AT, so the effective resistivity p is given by

o~ AT + B [2.17]

where A and B are temperature-independent constants.

Equation 2.17 indicates that the resistivity of a metal varies almost linearly with
the temperature, with A and B depending on the material. Instead of listing A and B in
resistivity tables, we prefer to use a temperature coefficient that refers to small, nor-
malized changes around a reference temperature. The temperature coefficient of
resistivity (TCR) o is defined as the fractional change in the resistivity per unit tem-
perature increase at the reference temperature 7y, that is,

1156,
g = _[_'(1} [2.18]
poLéT =T,

where py is the resistivity at the reference temperature Ty, usually 273 K (0 °C) or
293 K (20 °C), and 8p = p — po is the change in the resistivity due to a small increase
in temperature, 87 = T — Ty.

When the resistivity follows the behavior p ~ AT + B in Equation 2.17, then
according to Equation 2.18, « is constant over a temperature range Ty to 7', and Equa-
tion 2.18 leads to the well-known equation,

p = poll + ao(T — Tp)] [2.19]

Equation 2.19 is actually only valid when « is constant over the temperature
range of interest, which requires Equation 2.17 to hold. Over a limited temperature
range, this will usually be the case. Although it is not obvious from Equation 2.19,

we should note that oy depends on the reference temperature Ty, by virtue of pg |

depending on Tp.
The equation p = AT, which we used for pure-metal crystals to find the change

in the resistance with temperature, is only approximate; nonetheless, for pure metals,
it is useful to recall in the absence of tabulated data. To determine how good the

formula p = AT is, put it in Equation 2.19, which leads to o = To". If we take the
reference temperature Ty as 273 K (0 °C), then «y is simply 1/273 K; stated differently,
Equation 2.19 is then equivalent to p = AT .

Table 2.1 shows that p o« T is not a bad approximation for some of the familiar
pure metals used as conductors (Cu, Al, Au, etc.), but it fails badly for others, such as
indium, antimony, and, in particular, the magnetic metals, iron and nickel.

The temperature dependence of the resistivity of various metals is shown in Fig-
ure 2.7, where it is apparent that except for the magnetic materials, such as iron and
nickel, the linear relationship p o< T seems to be approximately obeyed almost all the
way to the melting temperature for many pure metals. It should also be noted that for
the alloys, such as nichrome (Ni—Cr), the resistivity is essentially dominated by the
residual resistivity, so the resistivity is relatively temperature insensitive, with a very
small TCR.
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Table 2.1 Resistivity, thermal coefficient of resistivity ag at 273 K (0 °C) for various metals. The
resistivity index n in p o« T" for some of the metals is also shown.

Metal po (N2 m) ao(%) n Comment
Aluminum, Al 25.0 —1—— 1.20

233
Antimony, Sb 38 I—;E 1.40
Copper, Cu 15.7 521’;5 1.15
Gold, Au 22.8 2—; 1.11
Indium, In 78.0 1—‘,1)_6 1.40

1

Platinum, Pt 98 355 0.94
Silver, Ag 14.6 5171 1.11
Tantalum, Ta 117 2—;—4- 0.93
Tin, Sn 110 51—7 1.11
Tungsten, W 50 i—;—o 1.20
Iron, Fe 84.0 é 1.80 Magnetic metal; 273 < T < 1043 K
Nickel, Ni 59.0 ILZS 1.72 Magnetic metal; 273 < T < 627K

| SOURCE: Data were extracted and combined from several sources. Typical values.

Frequently, the resistivity versus temperature behavior of pure metals can be
empirically represented by a power law of the form

T Resistivity of
b= PO[’T‘.;] [2.20] pure metals

where pp is the resistivity at the reference temperature Ty, and n is a characteristic
index that best fits the data. Table 2.1 lists some typical n values for various pure met-
als above 0 °C. It is apparent that for the nonmagnetic metals, n is close to unity,
whereas it is closer to 2 than 1 for the magnetic metals Fe and Ni. In iron, for example,
the conduction electron is not scattered simply by atomic vibrations, as in copper, but
is affected by its magnetic interaction with the Fe ions in the lattice. This leads to a
complicated temperature dependence.

Although our oversimplified theoretical analysis predicts a linear p = AT + B
behavior for the resistivity down to the lowest temperatures, this is not true in reality,
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Figure 2.7 The resistivity of various metals as a function of temperature
above 0 °C.

Tin melts at 505 K, whereas nickel and iron go through a magneticto-
nonmagnetic (Curie) transformation at about 627 K and 1043 K, respectively.
The theoretical behavior (o ~ T) is shown for reference.

| SOURCE: Data selectively extracted from various sources, including sections in Metals
Handbook, 10th ed., 2 and 3. Metals Park, Ohio: ASM, 1991.

as depicted for copper in Figure 2.8. As the temperature decreases, typically below
~100 K for many metals, our simple and gross assumption that all the atoms are
vibrating with a constant frequency fails. Indeed, the number of atoms that are vibrat-
ing with sufficient energy to scatter the conduction electrons starts to decrease rapidly
with decreasing temperature, so the resistivity due to scattering from thermal vibra-
tions becomes more strongly temperature dependent. The mean free time 7 = 1/SuN;
becomes longer and strongly temperature dependent, leading to a smaller resistivity
than the p « T behavior. A full theoretical analysis, which is beyond the scope of this
chapter, shows that p o T?. Thus, at the lowest temperature, from Matthiessen’s rule,
the resistivity becomes p = DT> + pg, where D is a constant. Since the slope of p ver-
sus T isdp/dT = 5DT*, which tends to zero as T becomes small, we have p curving
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Figure 2.8 The resistivity of copper from lowest to highest temperatures (near
melting temperature, 1358 K) on a loglog plot.

Above about 100 K, p o T, whereas at low temperatures, p « T, and at the lowest
temperatures p approaches the residual resistivity pg. The inset shows the p vs. T
behavior below 100 K on a linear plot. (o is too small on this scale.)

toward pg as T decreases toward O K. This is borne out by experiments, as shown in
Figure 2.8 for copper. Therefore, at the lowest temperatures of interest, the resistivity
is limited by scattering from impurities and crystal defects.*
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MATTHIESSEN’S RULE  Explain the typical resistivity versus temperature behavior of annealed
and cold-worked (deformed) copper containing various amounts of Ni as shown in Figure 2.9.

SOLUTION

When small amounts of nickel are added to copper, the resistivity increases by virtue of
Matthiessen’s rule, p = pr + pr + p1, Where pr is the resistivity due to scattering from ther-
mal vibrations; p¢ is the residual resistivity of the copper crystal due to scattering from crystal
defects, dislocations, trace impurities, etc.; and p; is the resistivity arising from Ni addition

4 At sufficiently low temperatures {typically, below 10-20 K for many metals and below ~135 K for certain
ceramics) certain materials exhibit superconductivity in which the resistivity vanishes (o = 0), even in the presence of
impurities and crystal defects. Superconductivity and its quantum mechanical origin will be explained in Chapter 8.

EXAMPLE 2.7
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Figure 2.9 Typical temperature
dependence of the resistivity of
annealed and cold-worked (deformed)
copper containing various amounts of
Ni in atomic percentage.
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SOURCE: Data adapted from J.O. Linde,
Ann Pkysik, 5, 219 (Germany, 1932). Temperature (K)

alone (scattering from Ni impurity regions). Since p; is temperature independent, for small
amounts of Ni addition, o, will simply shift up the p versus T curve for copper, by an amount pro-
portional to the Ni content, p; & Ny;, where Ny; is the Ni impurity concentration. This is apparent
in Figure 2.9, where the resistivity of Cu—2.16% Ni is almost twice that of Cu-1.12% Ni. Cold
working (CW) or deforming a metal results in a higher concentration of dislocations and therefore
increases the residual resistivity pg by pcw. Thus, cold-worked samples have a resistivity curve
that is shifted up by an additional amount pcw that depends on the extent of cold working.

EXAMPLE 2.8

TEMPERATURE COEFFICIENT OF RESISTIVITY oo AND RESISTIVITY INDEX n If « is the tem-
perature coefficient of resistivity (TCR) at temperature T, and the resistivity obeys the equation

T n
g

n [ T ]n—l
Q= —|=—
ThLTo
What is your conclusion?
Experiments indicate that n = 1.2 for W. What is its a at 20 °C? Given that, experimen-
tally, g = 0.00393 for Cu at 20 °C, what is n?

SOLUTION

Since the resistivity obeys p = po(T/ Ty)", we substitute this equation into the definition of TCR,

1 |:dp] n [T]"“
)y = —|—|=—| —
°7 poldT ToL T,

It is clear that, in general, @y depends on the temperature T, as well as on the reference
temperature Ty. The TCR is only independent of T whenn = 1.

show that
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At T = Ty, we have

aoTo

=1 or n = agTy
n
ForW,n =1.2,s0atT = T, = 293 K, we have a3 x = 0.0041, which agrees reasonably
well with a3 ¢ = 0.0045, frequently found in data books.
For Cu, az93 x = 0.00393, so that n = 1.15, which agrees with the experimental value of n.

TCR AT DIFFERENT REFERENCE TEMPERATURES If «; is the temperature coefficient of resis- JEEIIJIIWR"
tivity (TCR) at temperature T, and «, is the TCR at T;, show that

Qo
Q= —
1+ ao(Ty — Tp)
SOLUTION
Consider the resistivity at temperature T in terms of oy and a;:
p = poll + ao(T — Tp)] and p=pill + o (T — T1)]

These equations are expected to-hold at any temperature T, so the first and second equa-
tions at 7; and Ty, respectively, give ’

p1 = poll + ao(Ty — Tp)] and oo = pill + ay(Tp — TY)]

These two equations can be readily solved to eliminate p, and p; to obtain

@ = — %
T 1t (T - o)
TEMPERATURE OF THE FILAMENT OF A LIGHT BULB  ExampLE 2.10

a. Consider a40 W, 120 V incandescent light bulb. The tungsten filament is 0.381 m long and
has a diameter of 33 wm. Its resistivity at room temperature is 5.51 x 1078 Q m. Given that
the resistivity of the tungsten filament varies at 7'!-2, estimate the temperature of the bulb
when it is operated at the rated voltage, that is, when it is lit directly from a power outlet,
as shown schematically in Figure 2.10. Note that the bulb dissipates 40 W at 120 V.

b. Assume that the electrical power dissipated in the tungsten wire is radiated from the sur-
face of the filament. The radiated electromagnetic power at the absolute temperature T can

Figure 2.10 Power radiated from a light bulb is
40w equal to the electrical power dissipated in the

N T / filament.

0333A

r-b

120V
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be described by Stefan’s law, as follows:
Pragiaed = GUSA(T4 - T04)

where o is Stefan’s constant (5.67 x 1078 W m~2 K~*), ¢ is the emissivity of the surface
(0.35 for tungsten), A is the surface area of the tungsten filament, and T is the room
temperature (293 K). For 7% >> T}, the equation becomes

4
Pradiated = GUSAT

Assuming that all the electrical power is radiated as electromagnetic waves from the
surface, estimate the temperature of the filament and compare it with your answer in part (a).

SOLUTION

a. When the bulb is operating at 120V, it is dissipating 40 W, which means that the current is

Since R = pL /A, the resistivity of tungsten at the operating temperature T must be

R(nD?/4) _360Qm(33 x 10-% m)?
L - 4(0.381 m)

But, p(T) = po(T/To)'?, so that

80.8 x 10-8\"/"?
T = Ty ————

p(T) = =8.08x107"Qm

5.51 x 10-8
= 2746 K or 2473 °C (melting temperature of W is about 3680, K)

b. To calculate T from the radiation law, we note that T = [ Prgiaea /€05 A1/4.
The surface area is

A= L(D)=(0.381)(733 x 107 = 3.95 x 1075 m?
Then,

_ [Pradiated ]‘ t [ oW ]‘/4
€osA (0.35)(5.67 x 10-8 Wm~2K-4)(3.95 x 10-5m?)
=[5.103 x 10"%]'/* = 2673 K or 2400 °C

The difference between the two methods is less than 3 percent.

2.3.2 SOLID SOLUTIONS AND NORDHEIM’S RULE

In an isomorphous alloy of two metals, that is, a binary alloy that forms a solid solution,
we would expect Equation 2.15 to apply, with the temperature-independent impurity
contribution p; increasing with the concentration of solute atoms. This means that as the
alloy concentration increases, the resistivity p increases and becomes less temperature
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An important phenomenon that we can comfortably explain using the “electron as a
particle” concept is the Hall effect, which is illustrated in Figure 2.16. When we apply
a magnetic field in a perpendicular direction to the applied field (which is driving the
current), we find there is a transverse field in the sample that is perpendicular to the
direction of both the applied field £, and the magnetic field B,, that is, in the y direc-
tion. Putting a voltmeter across the sample, as in Figure 2.16, gives a voltage reading
Vy.The applied field , drives a current J, in the sample. The electrons move in the —x
direction, with a drift velocity v4,. Because of the magnetic field, there is a force (called
the Lorentz force) acting on each electron and given by F), = —evg, B,. The direction
of this Lorentz force is the —y direction, which we can show by applying the cork-
screw rule, because, in vector notation, the force F acting on a charge ¢ moving with a
velocity v in a magnetic field B is given through the vector product

F=gvxB [2.29]

All moving charges experience the Lorentz force in Equation 2.29 as shown
schematically in Figure 2.17. In our example of a metal in Figure 2.16, this Lorentz
force is the —y direction, so it pushes the electrons downward, as a result of which
there is a negative charge accumulation near the bottom of the sample and a positive
charge near the top of the sample, due to exposed metal ions (e.g., Cu®).

O,

q=+te q=-€ Figure 2.17 A moving charge experiences a
v v Lorentz force in a magnetic field.

(a) A positive charge moving in the x direction
experiences a force downward.

B B B (b) A negative charge moving in the —x direction
F=gvxB F=qvx B alsoexperiences a force downward.

{a) (b)
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Lorentz force

@ B, The z direction is out of the plane of the paper. The

fly =0 Figure 2.16 lllustration of the Hall effect.
y externally applied magnetic field is along the z direction.
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The accumulation of electrons near the bottom results in an internal electric field
Ey in the —y direction. This is called the Hall field and gives rise to a Hall voltage
Vi between the top and bottom of the sample. Electron accumulation continues until
the increase in £y is sufficient to stop the further accumulation of electrons. When
this happens, the magnetic-field force ev,, B, that pushes the electrons down just bal-
ances the force eEy that prevents further accumulation. Therefore, in the steady state,

eEy = evy B,

However, J, = env,,. Therefore, we can substitute for vy, to obtain eEy = J, B,/nor

Ey = (-l—> J:B, [2.30]
en
A useful parameter called the Hall coefficient Ry is defined as
Ry = Ey [2.31]
J. B,

The quantity Ry measures the resulting Hall field, along y, per unit transverse
applied current and magnetic field. The larger Ry, the greater E, for a given J, and B,.
Therefore, Ry is a gauge of the magnitude of the Hall effect. A comparison of Equa-
tions 2.30 and 2.31 shows that for metals,

1
Ry =—— [2.32]
éen
The reason for the negative sign is that £ = —E,, which means that Ep is in the —y
direction.

Inasmuch as Ry depends inversely on the free electron concentration, its value in
metals is much less than that in semiconductors. In fact, Hall-effect devices (such as
magnetometers) always employ a semiconductor material, simply because the Ry is
larger. Table 2.4 lists the Hall coefficients of various metals. Note that this is negative

Table 2.4 Hall coefficient and Hall mobility (uy = |oRul) of selected metals

n Ry (Experimental) uy = |oRy|
[m—J] [m3 A—l s—l] [ml v—-l s-—l]
Metal (x%0%8) (x10~1 (x107%
Ag 5.85 -9.0 57
Al 18.06 -35 13
Au 5.90 -72 31
Be 24.2 +3.4 ?
Cu 8.45 -5.5 32
Ga 15.3 —6.3 3.6
In 11.49 —-2.4 29
Mg 8.60 94 2
Na 2.56 -25 53
Magnetically operated Hall-effect
position sensor as available from SOURCES: Data from various sources, including C. Nording and J. Osterman, Physics Handbook,

Micro Switch.

Bromley, England: Chartwell-Bratt Ltd., 1982.
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for most metals, although a few metals exhibit a positive Hall coefficient (see Be in
Table 2.4). The reasons for the latter involve the band theory of solids, which we will
discuss in Chapter 4.

Since the Hall voltage depends on the product of two quantities, the current density
J, and the transverse applied magnetic field B,, we see that the effect naturally multi-
plies two independently variable quantities. Therefore, it provides a means of carrying
out a multiplication process. One obvious application is measuring the power dissipated
in a load, where the load current and voltage are multiplied. There are many instances
when it is necessary to measure magnetic fields, and the Hall effect is ideally suited to
such applications. Commercial Hall-effect magnetometers can measure magnetic fields
as low as 10 nT, which should be compared to the earth’s magnetic field of ~50 uT.
Depending on the application, manufacturers use different semiconductors to obtain the
desired sensitivity. Hall-effect semiconductor devices are generally inexpensive, small,
and reliable. Typical commercial, linear Hall-effect sensor devices are capable of pro-
viding a Hall voltage of ~10 mV per mT of applied magnetic field.

The Hall effect is also widely used in magnetically actuated electronic switches.
The application of a magnetic field, say from a magnet, results in a Hall voltage that is
amplified to trigger an electronic switch. The switches invariably use Si and are read-
ily available from various companies. Hall-effect electronic switches are used as non-
contacting keyboard and panel switches that last almost forever, as they have no me-
chanical contact assembly. Another advantage is that the electrical contact is “bounce”
free. There are a variety of interesting applications for Hall-effect switches, ranging
from ignition systems, to speed controls, position detectors, alignment controls, brush-
less dc motor commutators, etc.

HALL-EFFECT WATTMETER  The Hall effect can be used to implement a wattmeter to measurem
electrical power dissipated in a load. The schematic sketch of the Hall-effect wattmeter is shown
in Figure 2.18, where the Hall-effect sample is typically a semiconductor material (usually Si).
The load current I, passes through two coils, which are called current coils and are shown as C
in Figure 2.18. These coils set up a magnetic field B, such that B, o I, . The Hall-effect sample
is positioned in this field between the coils. The voltage V, across the load drives a current

1 Wattmeter

L I /J I
* . ® C
Vu
Load
Source Vi R,
W \_
R
v }lflx = Vy/R
Figure 2.18 Wattmeter based on the Hall effect.

Load voltage and load current have L as subscript; C denotes the current coils for setting up a magnetic field through the
Hall-effect sample (semiconductor).
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I, = V. /R through the sample, where R is a series resistance that is much larger than the resis-
tance of the sample and that of the load. Normally, the current I, is very small and negligible
compared to the load current. If w is the width of the sample, then the measured Hall voltage is

VH =wEy = WRHJ,;BZ [0 ¢ IXBZ X V]_]L

which is the electrical power dissipated in the load. The voltmeter that measures Vy can now be
calibrated to read directly the power dissipated in the load.

EXAMPLE 2.17

HALL MOBILITY Show that if Ry is the Hall coefficient and o is the conductivity of a metal,
then the drift mobility of the conduction electrons is given by

hq = |o Ry [2.33]

The Hall coefficient and conductivity of copper at 300 K have been measured to be
—0.55 x 10719 m* A=! s~' and 5.9 x 107 Q~! m™!, respectively. Calculate the drift mobility of
electrons in copper.

SOLUTION
Consider the expression for
’ -1
R H=—"

éen

Since the conductivity is given by ¢ = enp4, we can substitute for en to obtain

Ry = “Hd

or Ua = —Ryo

which is Equation 2.33. The drift mobility can thus be determined from Ry and 0.
The product of o and Ry is called the Hall mobility 5. Some values for the Hall mobility
of electrons in various metals are listed in Table 2.4. From the expression in Equation 2.33, we get

e =—(=0.55x 107" m3 A s H59%x 10 Q "mH=32x10m?Vv!s!

It should be mentioned that Equation 2.33 is an oversimplification.The actual relationship
involves a numerical factor that multiplies the right term in Equation 2.33. The factor depends
on the charge carrier scattering mechanism that controls the drift mobility.

3011 AEY CONDUCTION ELECTRON CONCENTRATION FROM THE HALL EFFECT Using the electron

drift mobility from Hall-effect measurements (Table 2.4), calculate the concentration of con-
duction electrons in copper, and then determine the average number of electrons contributed to
the free electron gas per copper atom in the solid.

SOLUTION

The number of conduction electrons is given by n = o/eu . The conductivity of copper is
5.9 x 107 Q' m™!, whereas from Table 2.4, the electron drift mobility is 3.2 x 10->m?V-'s"!, So,
(5.9x 10" Q"' m™")

= =1.15 x 10® m™3
P 6x10P CO)B32x 103 m V-15-1)] *mem

Since the concentration of copper atoms is 8.5 x 10%® m™3, the average number of elec-
trons contributed per atom is (1.15 x 10 m~%)/(8.5 x 10%® m~3) ~ 1.36.
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26 THERMAL CONDUCTION

26.1 THERMAL CONDUCTIVITY

Experience tells us that metals are both good electrical and good thermal conductors.
We may therefore surmise that the free conduction electrons in a metal must also play
arole in heat conduction. Our conjecture is correct for metals, but not for other mate-
rials. The transport of heat in a metal is accomplished by the electron gas (conduction
electrons), whereas in nonmetals, the conduction is due to lattice vibrations.

When a metal piece is heated at one end, the amplitude of the atomic vibrations,
and thus the average kinetic energy of the electrons, in this region increases, as de-
picted in Figure 2.19. Electrons gain energy from energetic atomic vibrations when the
two collide. By virtue of their increased random motion, these energetic electrons then
transfer the extra energy to the colder regions by colliding with the atomic vibrations
there. Thus, electrons act as “energy carriers.”

The thermal conductivity of a material, as its name implies, measures the ease
with which heat, that is, thermal energy, can be transported through the medium.
Consider the metal rod shown in Figure 2.20, which is heated at one end. Heat will
flow from the hot end to the cold end. Experiments show that the rate of heat flow,
Q' = dQ/dt, through a thin section of thickness éx is proportional to the temperature
gradient §T /8 x and the cross-sectional area A, so
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Fourier’s law

Q'= _AKE [2.34] of thermal
o conduction
Hot Cold
Heat
> \ ﬁ@g
> NIV /e Hot = Cold
' Q O > p
I —> ¢ ,Q' p Heat dt A
>
Electron gas Vibratmg Cu* ions — %

Figure 2.19 Thermal conduction in a metal involves
transferring energy from the hot region to the cold region
by conduction electrons.

More energetic electrons (shown with longer velocity
vectors) from the hotter regions arrive at cooler regions,
collide with lattice vibrations, and transfer their energy.
Lengths of arrowed lines on atoms represent the
magnitudes of atomic vibrations.

Figure 2.20 Heat flow in a metal rod heated at
one end.

Consider the rate of heat flow, dQ/dt, across a
thin section x of the rod. The rate of heat flow is
proportional to the temperature gradient 8T/5x
and the cross-sectional area A.
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where « is a material-dependent constant of proportionality that we call the thermal
conductivity. The negative sign indicates that the heat flow direction is that of decreasing
temperature. Equation 2.34 is often referred to as Fourier’s law of heat conduction and is
a defining equation for «. The driving force for the heat flow is the temperature gradient
8T /8x. If we compare Equation 2.34 with Ohm’s law for the electric current /, we see that

I =—-Ac—

éx

which shows that in this case, the driving force is the potential gradient, that is, the elec-
tric field.” In metals, electrons participate in the processes of charge and heat transport,
which are characterized by o and «, respectively. Therefore, it is not surprising to find
that the two coefficients are related by the Wiedemann-Franz-Lorenz law,? which is

[2.35]

K
oT
where Cwr = 72k?/3e? = 2.44 x 1078 W Q K2 is a constant called the Lorenz
number (or the Wiedemann-Franz—Lorenz coefficient).

Experiments on a wide variety of metals, ranging from pure metals to various
alloys, show that Equation 2.36 is reasonably well obeyed at close to room tempera-
ture and above, as illustrated in Figure 2.21. Since the electrical conductivity of pure
metals is inversely proportional to the temperature, we can immediately conclude that

the thermal conductivity of these metals must be relatively temperature independent at
room temperature and above.

= CwrL [2.36]

7 Recall that J = o’E which is equivalent to Equation 2.35.

8 Historically, Wiedemann and Franz noted in 1853 that k' /o is the same for all metals at the same temperature.
Lorenz in 1881 showed that k /o is proportional to the temperature with a proportionality constant that is nearly
the same for many metals. The law stated in Equation 2.36 reflects both observations. By the way, Lorenz, who was
a Dane, should not be confused with Lorentz, who was Dutch.
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] / Figure 2.22 Thermal conductivity versus temperature
Al-14%Mg for two pure metals (Cu and Al) and two alloys (brass and
1 Al-14% Mg).
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Figure 2.23 Conduction of heat in insulators involves the generation and propagation of atomic

vibrations through the bonds that couple the atoms {an intuitive figure).

Figure 2.22 shows the temperature dependence of « for copper and aluminum down to
the lowest temperatures. It can be seen that for these two metals, above ~100 K, the ther-
mal conductivity becomes temperature independent, in agreement with Equation 2.36.
Qualitatively, above ~100 K, « is constant, because heat conduction depends essentially
on the rate at which the electron transfers energy from one atomic vibration to another as it
collides with them (Figure 2.19). This rate of energy transfer depends on the mean speed
of the electron u, which increases only fractionally with the temperature. In fact, the frac-
tionally small increase in  is more than sufficient to carry the energy from one collision to
another and thereby excite more energetic lattice vibrations in the colder regions.

Nonmetals do not have any free conduction electrons inside the crystal to transfer
thermal energy from hot to cold regions of the material. In nonmetals, the energy trans-
fer involves lattice vibrations, that is, atomic vibrations of the crystal. We know that we
can view the atoms and bonds in a crystal as balls connected together through springs
as shown for one chain of atoms in Figure 2.23. As we know from the kinetic molecu-
lar theory, all the atoms would be vibrating and the average vibrational kinetic energy
would be proportional to the temperature. Intuitively, as depicted in Figure 2.23, when
we heat one end of a crystal, we set up large-amplitude atomic vibrations at this hot
end. The springs couple the vibrations to neighboring atoms and thus allow the large-
amplitude vibrations to propagate, as a vibrational wave, to the cooler regions of the
crystal. If we were to grab the left-end atom in Figure 2.23 and vibrate it violently, we
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would be sending vibrational waves down the ball-spring-ball chain. The efficiency of
heat transfer depends not only on the efficiency of coupling between the atoms, and
hence on the nature of interatomic bonding, but also on how the vibrational waves
propogate in the crystal and how they are scattered by crystal imperfections and by
their interactions with other vibrational waves; this topic is discussed in Chapter 4. The
stronger the coupling, the greater will be the thermal conductivity, a trend that is intu-
itive but also borne out by experiments. Diamond has an exceptionally strong covalent
bond and also has a very high thermal conductivity; « ~ 1000 W m~! K~!. On the
other hand, polymers have weak secondary bonding between the polymer chains and
their thermal conductivities are very poor; k < 1 W m~! K1,

The thermal conductivity, in general, depends on the temperature. Different classes
of materials exhibit different « values and also different « versus T behavior. Table 2.5

Table 2.5 Typical thermal conductivities of various classes
of materials at 25 °C

Material k (Wm™ 1K™
Pure metal
Nb 52
Fe 80
Zn 113
w 178
Al 250
Cu 390
Ag 420
Metal alloys
Stainless steel 12-16
55% Cu—45% Ni 19.5
70% Ni-30% Cu 25
1080 steel 50
Bronze (95% Cu-5% Sn) 80
Brass (63% Cu-37% Zn) 125
Dural (95% Al-4% Cu-1% Mg) 147
Ceramics and glasses
Glass-borosilicate 0.75
Silica-fused (SiO;) 1.5
S3N4 20
Alumina (Al,O3) 30
Sapphire (Al1;,03) 37
Beryllium (BeO) 260
Diamond ~1000
Polymers
Polypropylene 0.12
PVC 0.17
Polycarbonate 0.22
Nylon 6,6 0.24
Teflon 0.25
Polyethylene, low density 0.3

Polyethylene, high density 0.5
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summarizes « at room temperature for various classes of materials. Notice how ce-
ramics have a very large range of « values.
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THERMAL CONDUCTIVITY A 95/5 (95% Cu-5% Sn) bronze bearing made of powdered metal
contains 15% (vol.%) porosity. Calculate its thermal conductivity at 300 K, given that the
electrical conductivity of 95/5 bronze is 10’ ! m™!.

SOLUTION

Recall that in Example 2.14, we found the electrical resistivity of the same bronze by using the
mixture rule in Equation 2.26 in Section 2.4. We can use the same mixture rule again here, but
we need the thermal conductivity of 95/5 bronze. From « /o T = Cwg., we have

k =0TCwr = (1 x 107)(300)(2.44 x 10°8) = 73.2Wm~' K~
Thus, the effective thermal conductivity is
L_i[”%""]_ 1 [1+§(o.15)]
1— xa (732Wm-'K )L 1-0.15

Keff Kc
so that
Kegt =57.9Wm™' K™!

EXAMPLE 2.19

26.2 THERMAL RESISTANCE

Consider a component of length L that has a temperature difference AT between its
ends as in Figure 2.24a. The temperature gradient is AT /L. Thus, the rate of heat flow,
or the heat current, is

, AT AT -
Q=Ak— = ——— [2.37]  Fourier’s law
L. (L/kA)
This should be compared with Ohm’s law in electric circuits,
AV AV
] = — = ——— [2.38] Ohm’s law
R (L/o A)
where AV is the voltage difference across a conductor of resistance R, and / is the
electric current.
Q' = AT/ Figure 2.24 Conduction of heat through a
<« AT —> component in (a) can be modeled as a thermal
Hot Cold <« AT —> resistance 6 shown in (b) where Q" = AT/6.

cupl (e =\ oo

0

<«— L —

(a) (b)
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In analogy with electrical resistance, we may define thermal resistance 6 by

AT
= — [2.39]
Q 0
where, in terms of thermal conductivity,
L
0 =— [2.40]
KA

The rate of heat flow Q' and the temperature difference AT correspond to the
electric current / and potential difference AV, respectively. Thermal resistance is the
thermal analog of electrical resistance and its thermal circuit representation is shown
in Figure 2.24b.

FIVIFRIY THERMAL RESISTANCE A brass disk of electrical resistivity 50 n2 m conducts heat from

a heat source to a heat sink at a rate of 10 W. If its diameter is 20 mm and its thickness is
30 mm, what is the temperature drop across the disk, neglecting the heat losses from the
surface?

SOLUTION
We first determine the thermal conductivity:
Kk =0TCwr = (5 x 1072 Q m)~"(300 K)(2.44 x 107* W Q K™?)
=146 Wm™' K™!
The thermal resistance is

0= L (30 x 1073 m)

= =0.65KW!
kA  m(10 x 1073 m)2(146 W m~! K-1)

Therefore, the temperature drop is
AT =0Q' = (0.65 K W) (10 W) = 6.5 K or °C

2.7 ELECTRICAL CONDUCTIVITY OF NONMETALS

All metals are good conductors because they have a very large number of conduction
electrons free inside the metal. We should therefore expect solids that do not have
metallic bonding to be very poor conductors, indeed insulators. Figure 2.25 shows
the range of conductivities exhibited by a variety of solids. Based on typical values
of the conductivity, it is possible to empirically classify various materials into con-
ductors, semiconductors, and insulators as in Figure 2.25. It is apparent that non-
metals are not perfect insulators with zero conductivity. There is no well-defined
sharp boundary between what we call insulators and semiconductors. Conductors
are intimately identified with metals. It is more appropriate to view insulators as
high resistivity (or low conductivity) materials. In general terms, current conduc-
tion is due to the drift of mobile charge carriers through a solid by the application of
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Figure 2.25 Range of conductivities exhibited by various materials.

an electric field. Each of the drifting species of charge carriers contributes to the ob-
served current. In metals, there are only free electrons. In nonmetals there are other
types of charge carriers that can drift.

2.7.1 SEMICONDUCTORS

A perfect Si crystal has each Si atom bonded to four neighbors, and each covalent
bond has two shared electrons as we had shown in Figure 1.59a. We know from clas-
sical physics (the kinetic molecular theory and Boltzmann distribution) that all the
atoms in the crystal are executing vibrations with a distribution of energies. As the
temperature increases, the distribution spreads to higher energies. Statistically some
of the atomic vibrations will be sufficiently energetic to rupture a bond as indicated
in Figure 2.26a. This releases an electron from the bond which is free to wander in-
side the crystal. The free electron can drift in the presence of an applied field; it is
called a conduction electron. As an electron has been removed from a region of the
crystal that is otherwise neutral, the broken-bond region has a net positive charge.
This broken-bond region is called a hole (4*). An electron in a neighboring bond can
jump and repair this bond and thereby create a hole in its original site as shown in
Figure 2.26b. Effectively, the hole has been displaced in the opposite direction to the
electron jump by this bond switching. Holes can also wander in the crystal by the
repetition of bond switching. When a field is applied, both holes and electrons con-
tribute to electrical conduction as in Figure 2.26c. For all practical purposes, these
holes behave as if they were free positively charged particles (independent of the
original electrons) inside the crystal. In the presence of an applied field, holes drift
along the field direction and contribute to conduction just as the free electrons
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(a)
Figure 2.26

(b) (c)

(a) Thermal vibrations of the atoms rupture a bond and release a free electron into the crystal. A hole is left in the broken
bond, which has an effective positive charge.

(b) An electron in a
has been displaced

neighboring bond can jump and repair this bond and thereby create a hole in its original site; the hole

(c) When a field is applied, both holes and electrons contribute to electrical conduction.

Conductivity
of a semi-
conductor

released from the broken bonds drift in the opposite direction and contribute to con-
duction.

It is also possible to create free electrons or holes by intentionally doping a semi-
conductor crystal, that is substituting impurity atoms for some of the Si atoms. Defects
can also generate free carriers. The simplest example is nonstoichiometric ZnO that is
shown in Figure 1.55b which has excess Zn. The electrons from the excess Zn are free
to wander in the crystal and hence contribute to conduction.

Suppose that #n and p are the concentrations of electrons and holes in a semicon-
ductor crystal. If electrons and holes have drift mobilities of u, and u;, respectively,
then the overall conductivity of the crystal is given by

o =epup+enu, [2.41]

Unless a semiconductor has been heavily doped, the concentrations n» and p are
much smaller than the electron concentration in a metal. Even though carrier drift mo-
bilities in most semiconductors are higher than electron drift mobilities in metals,
semiconductors have much lower conductivities due to their lower concentration of
free charge carriers.

EXAMPLE 2.21

HALL EFFECT IN SEMICONDUCTORS The Hall effect in a sample where there are both nega-
tive and positive charge carriers, for example, electrons and holes in a semiconductor, involves
not only the concentrations of electrons and holes, n and p, respectively, but also the electron
and hole drift mobilities, x, and u,. We first have to reinterpret the relationship between the
drift velocity and the electric field E.
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Figure 2.27 Hall effect for ambipolar
+ - + + - + conduction as in a semiconductor where there
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¢ The magnetic field B, is out from the plane of
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If u. is the drift mobility and v, is the drift velocity of the electrons, then we already know that
v, = . E. This has been derived by considering the net electrostatic force eE acting on a single
electron and the imparted acceleration a = eE/m,. The drift is therefore due to the net force
F, = e experienced by a conduction electron. If we were to keep eE as the net force F, acting
on a single electron, then we would have found

ve = L, [2.42]
(4

Equation 2.42 emphasizes the fact that drift is due to a net force F,., acting on an electron. A sim-
ilar expression would also apply to the drift of a hole in a semiconductor.

When both electrons and holes are present in a semiconductor sample, both charge carriers
experience a Lorentz force in the same direction since they would be drifting in the opposite di-
rections as illustrated in Figure 2.27. Thus, both holes and electrons tend to pile near the bottom
surface. The magnitude of the Lorentz force, however, will be different since the drift mobili-
ties and hence drift velocities will be different in general. Once equilibrium is reached, there
should be no current flowing in the y direction as we have an open circuit. Suppose that more
holes have accumulated near the bottom surface so there is a built-in electric field £, along .y as
shown in Figure 2.27. Suppose that v,, and vy, are the usual electron and hole drift ve-
locities in the —y and +y directions, respectively, as if the electric field £, existed
alone in the +y direction. The net current along y is zero, which means that

Jy = Jy+ J. = epvyy + env,, =0 [2.43]
From Equation 2.43 we obtain
DUy = —NU,y [2.44]

We note that either the electron or the hole drift velocity must be reversed from its usual di-
rection; for example, holes drifting in the opposite directon to E, The net force acting on the
charge carriers cannot be zero. This is impossible when two types of carriers are involved and
both carriers are drifting along y to give a net current J, that is zero. This is what Equation 2.43
represents. We therefore conclude that, along y, both the electron and the hole must experience a

Drift velocity
and net force
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driving force to drift them. The net force experienced by the carriers, as shown in Figure 2.27, is
Fyy = eE, — evy, B, and —F.y = eE, + ev., B, [2.45]

where v,,, and v, are the hole and electron drift velocities, respectively, along x. In general, the drift
velocity is determined by the net force acting on a charge carrier; that is, from Equation 2.42
€Vpy

Fyy = and  —F,, =
YT T ke

ev,,

so that Equation 2.45 becomes,

€Vpy
— = €E, — ev); B, and
Kn He
where vy, and v, are the hole and electron drift velocities along y. Substituting v,, = u,E, and
Vex = M.E,, these become

ev,y

=eE, + ev, B,

™ g, - uyEB, and -2 =, + u,E,B, [2.46]
Hon He
From Equation 2.46 we can substitute for v,, and v., in Equation 2.44 to obtain
punEy — pusEB, = —nu.E, — nulE, B,
or
E,(pun +nu,) = B.E(pui — nu?) [2.47]

We now consider what happens along the x direction. The total current density is finite and
is given by the usual expression,

Jy = epup, +enve, = (puup +np.)eE, [2.48]
We can use Equation 2.48 to substitute for E, in Equation 2.47, to obtain

eEy(npt. + pun)* = B Jc(puj — nu?)
The Hall coefficient, by definition, is Ry = £, /J; B,, so

2 _ 2
Ry = —obh —TRe [2.49)
e(pun +np.)
or
— nb?
g=-L21 [2.50]
e(p + nb)?

where b = u,./u,. Itis clear that the Hall coefficient depends on both the drift mobility ratio and
the concentrations of holes and electrons. For p > nb?, Ry will be positive and for p < nb?, it
will be negative. We should note that when only one type of carrier is involved, for example,
electrons only, the J, = 0 requirement means that J, = env,, = 0, or v,, = 0. The drift veloc-
ity along y can only be zero, if the net driving force F,, along y is zero. This occurs when
eE, — ev., B, = 0, that is, when the Lorentz force just balances the force due to the built-in field.

HALL COEFFICIENT OF INTRINSIC SILICON At room temperature, a pure silicon crystal (called
intrinsic silicon) has electron and hole concentrations n = p = n; = 1.5 x 10" cm™3, and
electron and hole drift mobilities ¢, = 1350 cm? V~! s=! and u;, = 450 cm? V~! s~!. Calcu-
late the Hall coefficient and compare it with a typical metal.
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SOLUTION

Givenn = p =n; = 1.5 x 10!° em™3, ., = 1350 cm? V-! 57!, and u;, = 450 cm? V-! 571,
we have

1
po Be 1350
Mp 450
Then from Equation 2.50,
R (1.5 x 10'* m~3) — (1.5 x 10'* m~3)(3)?
H

= (1.6 x 10-7 C)[(1.5 x 10" m—3) + (1.5 x 10'6 m—3)(3)2
=-208m’A~'s"!

which is orders of magnitude larger than that for a typical metal. All Hall-effect devices use a
semiconductor rather than a metal sample.
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2.7.2 IoNIiC CRYSTALS AND GLASSES

Figure 2.28a shows how crystal defects in an ionic crystal lead to mobile charges that
can contribute to the conduction process. All crystalline solids possess vacancies and
interstitial atoms as a requirement of thermal equilibrium. Many solids have intersti-
tial impurities which are often ionized or charged. These interstitial ions can jump,
i.e., diffuse, from one interstitial site to another and hence drift by diffusion in the
presence of a field. A positive ion at an interstitial site such as that shown in Figure
2.28a always prefers to jump into a neighboring interstitial site along the direction of
the field because it experiences an effective force in this direction. When an ion with

Y P 2

Vacancy aids the diffusion of positive ion

CROXCICRIOX: o s
CICKOIICXXO
©0FO00®
CICYCXJOCKO Na
cIoXcHORe
q%g@q@e
Anion vacancy
acts as a donor

Interstitial cation diffuses
(a) (b)

Figure 2.28 Possible contributions to the conductivity of ceramic and glass insulators.
(a) Possible mobile charges in a ceramic.
(b) An Na* ion in the glass structure diffuses and therefore drifts in the direction of the field.
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