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CHAPTER

Modern Theory of Solids

Ohe of the great successes of modern physics has been the application of quantum
mechanics or the Schrodinger equation to the behavior of molecules and solids. For
example, quantum mechanics explains the nature of the bond between atoms, and its
consequences. How can carbon bond with four other carbon atoms? What determines
the direction and strength of a bond? An intuitively obvious outcome from quantum
mechanics is that the energy of the electron is still quantized in the molecule. In addi-
tion, the application of quantum mechanics to many atoms, as in a solid, leads to en-
ergy bands within which the electron energy levels are almost continuous. The electron
energy falls within possible values in a band of energies. It is nearly impossible to
comprehend the principles of operation of modern solid-state electronic devices with-
out a good grasp of the band theory of solids. Since we are dealing with a large num-
ber of electrons in the solid, we must consider a statistical way of describing their
behavior, just as we use the Maxwell distribution of velocities to explain the behavior
of gas atoms. An equally important question, therefore, is “What is the probability that
an electron is in a state with energy E within an energy band?”

41 HYDROGEN MOLECULE: MOLECULAR ORBITAL
THEORY OF BONDING

Consider what happens when two hydrogen atoms approach each other to form the
hydrogen molecule. This is the H-H (or H,) system. Let us examine the energy levels
of the H-H system as a function of the interatomic distance R. When the atoms are in-
finitely separated, each atom has its own set of energy levels, labeled 1s, 2s, 2p, etc.
The electron energy in each atom is —13.6 eV with respect to the “free” state (electron
infinitely separated from the parent nucleus). The energy of the two isolated hydrogen
atoms is twice —13.6 eV. ‘ )

As the atoms approach closer, the electrons interact both with each other and with
the other nuclei. To obtain the wavefunctions and the new energy of the electrons, we
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need to find the new potential energy function PE for the electrons in this new envi-
ronment and then solve the Schrédinger equation with this new PE function. The new
energy is actually lower than twice — 13 6 eV, which means that the H, formation is
energetically favorable.

The bond formation between two H atoms can be easily explained by describing
the behavior of the electron within the molecule. We use a molecular orbital 1, which
depends on the interaction of individual atomic wavefunctions and is regarded as an
electron wavefunction within the molecule.

In the H,; molecule, we cannot have two sets of identical atomic v, orbitals, for
two reasons. First, this would violate the Pauli exclusion principle, which requires that,
in a given system of electrons (those within the H, molecule), we cannot have two sets
of identical quantum numbers. When the atoms were separated, we did not have this
problem, because we had two isolated systems.

Second, as the two atoms approach each other, as shown in Figure 4.1, the atomic
¥ s wavefunctions overlap. This overlap produces two new wavefunctions with differ-
ent energies and hence different quantum numbers. When the two atomic wavefunctions
interfere, they can overlap either in phase (both positive or both negative) or out of phase

Two hydrogen atoms
approaching each other.

ls(rB)

Bonding molecular orbital

b= (1) + Uy rp)

r

11)0* = 1015(",4) —"/) ls(rB)

Antibonding molecular orbital

Figure 4.1 Formation of molecular orbitals, bonding, and antibonding (¥, and
Yo+) when two H atoms approach each other.

The two electrons pair their spins and occupy the bonding orbital ¥, .



4.1 HYDROGEN MOLECULE: MOLECULAR ORBITAL THEORY OF BONDING

(one positive and the other negative), as a result of which two molecular orbitals are
formed. These are conventionally labeled v, and v, as illustrated in Figure 4.1. Thus,
two of the molecular orbitals in the H-H system are .

Yo = Y15(ra) + ¥15(ra) [4.1]
wa‘ = wls(rA) - l/fls(rB) [4.2]

where the two hydrogen atoms are labeled A and B, and r4 and rp are the respective
distances of the electrons from their parent nucleus. In generating two separate molec-
ular orbitals ¥, and ¥, from a linear combination of two identical atomic orbitals v,
we have used the linear combination of atomic orbitals (LCAQO) method.

" The first molecular orbital v, is symmetric and has considerable magnitude be-
tween the nuclei, whereas the second v+, is antisymmetric and has a node between the
nuclei. The resulting electron probability distributions |,|* and |v/,+|* are shown in
Figure 4.2.

In an analogy to hydrogenic wavefunctions, since ¥,« has a node, we would
expect it to have a higher energy than the v, orbital and therefore a different energy
quantum number, which means that the Pauli exclusion principle is no longer violated.
We can also expect that because |,|? has an appreciable electron concentration be-
tween the two nuclei, the electrostatic PE, and hence the total energy for the wave-
function v, will be lower than that for v ,«, as well as those for the individual atomic
wavefunctions. -

Of course, the true wavefunctions of the electrons in the H, system must be deter-
mined by solving the Schrédinger equation, but an intelligent guess is that these must
look like ¢, and ¥,.. We can therefore use ¥, and ¥, in the Schrédinger equation,
with the correct form of the PE term V, to evaluate the energies E, and E,- of ¥, and
Yox, respectively, as a function of R. The PE function V in the H-H system has
positive PE contributions arising from electron—electron repulsions and proton—proton

H H

H H
MAM

(@) Electron probability distributions for bonding and antibonding orbitals,zpaand Y -

(b) Lines representing contours of constant probability (darker lines represent
greater relative probability).

Figure 4.2
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Figure 4.3 Electron energy in the system comprising two hydrogen atoms.

repulsions, but negative PE contributions arising from the attractions of the two elec-
trons to the two protons.

The two energies, E, and E,«, are widely different, with E, below E |, and E,-
above E |y, as shown schematically in Figure 4.3a. As R decreases and the two H atoms
get closer, the energy of the ¥, orbital state passes through a minimum at R = a. Each
orbital state can hold two electrons with spins paired, and within the two hydrogen
atoms, we have two electrons. If these enter the ¥, orbital and pair their spins, then
this new configuration is energetically more favorable than two isolated H atoms. It
corresponds to the hydrogen molecule H,. The energy difference between that of the
two isolated H atoms and the E, minimum energy at R = a is the bonding energy, as
illustrated in Figure 4.3a. When the two electrons in the H, molecule occupy the v,
orbital, their probability distribution (and hence, the negative charge distribution) is
such that the negative PE, arising from the attractions of these two electrons to the two
protons, is stronger in magnitude than the positive PE, arising from electron—electron
repulsions and proton—proton repulsions and the kinetic energy of the two electrons.
Therefore, the H, molecule is energetically stable.

The wavefunction i, corresponding to the lowest electron energy is called the
bonding orbital, and v, is the antibonding orbital. When two atoms are brought to-
gether, the two identical atomic wavefunctions combine in two ways to generate two
different molecular orbitals, each with a different energy. Effectively, then, an atomic



4.1 HYDROGEN MOLECULE: MOLECULAR ORBITAL THEORY OF BONDING

()
iw R C

(a) There is one resonant frequency,

v(w) L I ' ®g, in an isolated RLC circuit.
0]
@y

Coupling i(w)

Vi (b) There are two resonant frequencies
Lo in fwo coupled RLC circuits: one below
L L R E E and the other above w.
(0]

Figure 4.4

energy level, such as E |, splits into two, E, and E,.. The splitting is due to the inter-
action (or overlap) between the atomic orbitals. Figure 4.3b schematically illustrates
the changes in the electron energy levels as two isolated H atoms are brought together
to form the H, molecule.

The splitting of a one-atom energy level when a molecule is formed is analogous
to the splitting of the resonant frequency in an RLC circuit when two such circuits are
brought together and coupled. Consider the RLC circuit shown in Figure 4.4a. The cir-
cuit is excited by an ac voltage source. The current peaks at the resonant frequency wy,
asindicated in Figure 4.4a. When two such identical RLC circuits are coupled together
and driven by an ac voltage source, the current develops two peaks, at frequencies
o and w,, below and above wy, as illustrated in Figure 4.4b. The two peaks at w; and
w, are due to the mutual inductance that couples the two circuits, allowing them to
interact. From this analogy, we can intuitively accept the energy splitting observed in
Figure 4.3a.

Consider what happens when two He atoms come together. Recall that the 1s
orbital has paired electrons and is full. The 1s atomic energy level will again split into
two levels, E, and E,, associated with the molecular orbitals v, and v+, as illus-
trated in Figure 4.5. However, in the He-He system, there are four electrons, so two
occupy the v, orbital state and two go to the i,. orbital state. Consequently, the
system energy is not lowered by bringing the two He atoms closer. Furthermore, quan-
tum mechanical calculations show that the antibonding energy level E,. shifts higher
than the bonding level E, shifts lower. By the same token, although we could put an
additional electron at E,. in H, to make H;, we could not make H>~ by placing two
electrons at E .

From the He-He example, we can conclude that, as a general rule, the overlap of
full atomic orbital states does not lead to bonding. In fact, full orbitals repel each other,
because any overlap results in an increase in the system energy. To form a bond
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system greater than two isolated He atoms.

between two atoms, we essentially need an overlap of half-occupied orbitals, as in the
H, molecule.

Half-full v,

HYDROGEN HALIDE MOLECULE (HF) We already know that H has a half-occupied 1s orbital,
which can take part in bonding. Since the F atom has the electronic structure 152252 p°, two of
the p orbitals are full and one p orbital, p,, is half full. This means that only the p, orbital can
participate in bonding. Figure 4.6 shows the electron orbitals in both H and F. When the H atom
and the F atom approach each other to form an HF molecule, the v, orbital of H overlaps the
p. orbital of F. There are two possibilities for the overlap. First. ¥, and p, can overlap in phase
(both positive or both negative), to give a ¥, orbital that does not have a node between H and F,
as shown in Figure 4.6. Second, they can overlap out of phase (one positive and the other neg-
ative), so that the overlap orbital ¥, « has a node (similar to ¥+ in Figure 4.1). We know from
hydrogen atomic wavefunctions in Chapter 3 that orbitals with more nodes have higher ener-
gies. The molecular orbital v, therefore corresponds to a bonding orbital with a lower energy
than the ¥, « orbital. The two electrons, one from v/, and the other from p,, enter the v, orbital
with spins paired. thereby forming a bond between H and F.

Half-full p_
N\

H F H-F

Figure 4.6 H has one halfempty V1 orbital.

F has one half-empty py orbital but full p, and p; orbitals. The overlap between /1 and px produces a
bonding orbital and an antibonding orbital. The two electrons fill the bonding orbital and thereby form a
covalent bond between H and F.
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42 BAND THEORY OF SOLIDS

42.1 ENERGY BAND FORMATION

When we bring three hydrogen atoms (labeled A, B, and C) together, we generate
three separate molecular orbital states, v, ¥, and ¥, from three y|, atomic states.
Again, this occurs in three different ways, as illustrated in Figure 4.7a. As in the
case of the H, molecule, each molecular orbital must be either symmetric or anti-
symmetric with respect to center atom B.! The orbitals that satisfy even and odd
requirements are

1/fa = Ys(A) + ¥i(B) + IIIIY(C) [4.3qa]
Yy = Yis(A) — ¥1(C) [4.3b]
wc = wls(A) - 1/’1;(3) + 1/f|\(C) [4.3C]

where v, (A), ¥ 1,(B), and ¥ ,(C) are the 1s atomic wavefunctions centered around
the atoms A, B, and C, respectively, as shown in Figure 4.7a. For example, the wave-
function ¥ ,(A) represents v ,(r,), which is centered around A and has the form
exp(—ra/a,), where r, is the distance from the nucleus of A, and a,, is the Bohr radius.
Notice that vr(;(B) is missing in Equation 4.3b, so v, is antisymmetric.

The energies E,, E,, and E. of v, ¥, and ¢, can be calculated from the
Schrodinger equation by using the PE function of this system (the PE also includes
proton—proton repulsions). It is clear that since v, ¥, and v, are different, their
energies E,, Ej,, and E, are also different. Consequently, the 1s energy level splits into
three separate levels, corresponding to the energies of v¥,, ¥, and ¥, as depicted by
Figure 4.7b. By analogy with the electron wavefunctions in the hydrogen atom. we can
argue that if the molecular wavefunction has more nodes, its energy is higher. Thus, ¥,
has the lowest energy E,, ¥, has the next higher energy E, and ¢ has the highest
energy E., as shown in Figure 4.7b. There are three electrons in the three-hydrogen
system. The first two pair their spins and enter orbital i, at energy E,, and the third
enters orbital v, at energy E,. Comparing Figures 4.7 and 4.3, we notice that although
H, and H; both have two electrons in the lowest energy level, Hs also has an extra elec-
tron at the higher energy level (E£}), which tends to increase the net energy of the atom.
Thus, the Hy molecule is much less stable than the H, molecule.?

Now consider the formation of a solid. Take N Li (lithium) atoms from infinity
and bring them together to form the Li metal. Lithium has the electronic configuration
15%2s!, which is somewhat like the hydrogen atom, since the K shell is closed and the
third electron is alone in the 2s orbital.

Based on our previous discussions, we assume that the atomic energy levels will
splitinto N separate energy levels. Since the 1s subshell is full and is close to the nucleus,
it will not be affected much by the interatomic interactions; consequently, the energy of

! The reason is that the molecule A-B-C, when A, B, and C are identical atoms, is symmetric with respect to B. Thus
each wavefunction must have odd or even parity (Chapter 3).

2See G. Pimentel and R. Spratley, Understanding Chemistry, San Francisco: Holden-Day, Inc., 1972, pp. 682-687
for an excellent discussion
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Figure 4.8 The formation of a 2s energy band from the 2s orbitals when N Li atoms

come together to form the Li solid.

There are N 2s electrons, but 2N states in the band. The 2s band is therefore only half full.
The atomic 1s orbital is close to the Li nucleus and remains undisturbed in the solid. Thus,

each Li atom has a closed K shell (full 15 orbital).
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this state will experience only negligible splitting, if any. Since the 1s electrons will stay
close to their parent nuclei, we will not consider them during formation of the solid.

In the system of N isolated Li atoms, we have N electrons in N ,, orbitals at the
energy E,, as illustrated in Figure 4.8 (at infinite interatomic separation). Let us
assume that N is large (typically, ~10%*). As N atoms are brought together to form the
solid, the energy level at E, splits into N finely separated energy levels. The maximum
width of the energy splitting depends on the closest interatomic distance a in the solid,
as apparent in Figure 4.3a. The atoms separated by a distance greater than R = a give
rise to a lesser amount of energy splitting. The interatomic interactions between N vy,
orbitals thus spread the N energy levels between the bottom and top levels, E and E7,
respectively, which are determined by the closest interatomic distance a. Put differently,
Ep and E7 are determined by the distance between nearest neighbors. It is obvious that
with N very large, the energy separation between two consecutive energy levels is very
small; indeed, it is almost infinitesimal and not as exaggerated as in Figure 4.8.

Remember that each energy level E; in the Li metal of Figure 4.8 is the energy of
an electron wavefunction ¥iq(¢) in the solid, where ¥iq(¢) is one particular combi-
nation of the N atomic wavefunctions y,,. There are N different ways to combine N
atomic wavefunctions r,,, since each can be added in phase or out of phase, as is ap-
parent in Equations 4.3a to c (see also Figure 4.7a and b). For example, when all N ¢,
are summed in phase, the resulting wavefunction ¥q(1) is like ¢, in Equation 4.3a,
and it has the lowest energy. On the other hand, when N v, are summed with
alternating phases, + — + - - -, the resulting wavefunction ¥ (N) is like ¥, and it
has the highest energy. Other combinations of ¥, give rise to different energy values
between Eg and Er.

The single 2s energy level E, therefore splits into N (~10%*) finely separated
energy levels, forming an energy band, as illustrated in Figure 4.8. Consequently,
there are N separate energy levels, each of which can take two electrons with opposite
spins. The N electrons fill all the levels up to and including the level at N /2. There-
fore, the band is half full. We do not mean literally that the band is full to the half-
energy point. The levels are not spread equally over the band from Eg to E7, which
means that the band cannot be full to the half-energy point. Half filled simply means
half the states in the band are filled from the bottom up.

We have generated a half-filled band from a half-filled isolated 2s energy level.
The energy band resulting from the splitting of the atomic 2s energy level is loosely
termed the 2s band. By the same token, the atomic s levels are full, so any 1s band that
forms from these 1s states will also be full. We can get an idea of the separation of en-
ergy levels in the 2s band by noting that the maximum separation, Er — E g, between
the top and bottom of the band is on the order of 10 eV, but there are some 10?* atoms,
giving rise to 102* energy levels between E g and E7. Thus, the energy levels are finely
separated, forming, for all practical purposes, a continuum of energy levels.

The 2p energy level, as well as the higher levels at 3s and so on, also split into
finely separated energy levels, as shown in Figure 4.9. In fact, some of these energy
levels overlap the 2s band; hence, they provide further energy levels and “extend” the
2s band into higher energy levels, as indicated in Figure 4.10, which shows how en-
ergy bands in metals are often represented. The vertical axis is the electron energy. The
top of the 2s band, which is half full, overlaps the bottom of the 2 p band, which itself
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is overlapped near the top by the 3s band. We therefore have a band of energies that
stretches from the bottom of the 2s band all the way to the vacuum level, as depicted
in Figure 4.11. The reader may wonder what happened to the 3d, 4s, etc., bands. In the
solid, the energies of these bands (including the top portion of the 3s band) are above
the vacuum level, and the electron is free and far from the solid before it can acquire
those energies.

At a temperature of absolute zero, or nearly so, the thermal energy is insufficient to
excite the electrons to higher energy levels. so all the electrons pair their spins and fill
each energy level from E g up to an energy level E o that we call the Fermi level at O K,
as shown in Figure 4.11. The energy value for the Fermi level depends on where we take
the reference energy. For example, if we take the vacuum level as the zero reference, then
for the Li metal, E o is at —2.5 eV. The Fermi level is normally measured with respect to
the bottom of the band, in which case, it is simply termed the Fermi energy and denoted
E ro. For the Li metal, Er¢ is 4.7 eV, which is with respect to the bottom of the band. The
Fermi level has considerable significance, as we will discover later in this chapter.
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At absolute zero, all the energy levels up to the Fermi level are full. The energy
required to excite an electron from the Fermi level to the vacuum level, that is, to
liberate the electron from the metal, is called the work function @ of the metal. As the
temperature increases, some of the electrons get excited to higher energy levels. To de-
termine the probability of finding an electron at an energy level E, we must consider
what is called “particle statistics,” a topic that is key to understanding the behavior of
electronic devices. Clearly, the probability of finding an electron at 0 K at some energy
E < Ero is unity, and at E > Efg, the probability is zero. Table 4.1 summarizes the
Fermi energy and work function of a few selected metals.

The electrons in the energy band of a metal are loosely bound valence electrons
which become free in the crystal and thereby form a kind of electron gas. It is this elec-
tron gas that holds the metal ions together in the crystal structure and constitutes the
metallic bond. This intuitive interpretation is shown in Figure 4.9. When solid Li is
formed from N atoms, the N electrons fill all the lower energy levels up to N /2. The
energy of the system of N Li atoms, according to Figure 4.9, is therefore much less
than that of N isolated Li atoms by virtue of the N electrons taking up lower energy
levels. It must be emphasized that the electrons within a band do not belong to any
specific atom but to the whole solid. We cannot identify a given electron in the band
with a certain Li atom. All the 2s electrons essentially form an electron gas and have
energies that fall within the energy band. These electrons are constantly moving
around in the metal which in terms of quantum mechanics means that their wave-
functions must be of the traveling wave type and not the type that localizes the electron
around a given atom (e.g., ¥,.¢.m, in the hydrogen atom). We can represent each elec-
tron with a wavevector k so that its momentum p is fik.

Table 4.1 Fermi energy and work function of selected metals

Metal
Ag Al Au Cs Cu Li Mg Na

¢ (eV) 4.5 4.28 5.0 2.14 4.65 23 3.7 2.75
Ero (eV) 5.5 11.7 5.5 1.58 7.0 4.7 7.1 32
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422 PROPERTIES OF ELECTRONS IN A BAND

Since the electrons inside the metal crystal are considered to be “free,” their energy is
KE. These electrons occupy all the energy levels up to Erp as shown in the band dia-
gram of Figure 4.12a. The energy E of an electron in a metal increases with its mo-
mentum p as p?/2m,. Figure 4.12b shows the energy versus momentum behavior of
the electrons in a hypothetical one-dimensional crystal. The energy increases with mo-
mentum whether the electron is moving toward the left or right. Electrons take on all
available momentum values until their energy reaches Ero. For every electron that is
moving right (such as a), there is another (such as b) with the same energy but moving
left with the same magnitude of momentum. Thus, the average momentum is zero and
there is no net current.

Consider what happens when an electric field E, is applied in the —x direction.
The electron a at the Fermi level and moving along in the +x direction experiences a
force eZ, along the same direction. It therefore accelerates and gains momentum and
hence has the energy as shown in Figure 4.12c. (The actual energy gained from the
field is very small compared with Erg, so Figure 4.12c is highly exaggerated.) The
electron a at Ero can move to higher energy levels because these adjacent higher lev-
els are empty. The momentum state vacated by a is filled by the electron immediately
below which now gains energy and moves up, and so on. An electron that is moving in
the —x direction, however, is decelerated (its momentum decreases) and hence loses
energy as indicated by b moving to »" in Figure 4.12c. The electrons that are moving
in the +x direction gain energy, and those that are moving in the —x direction, lose en-
ergy. The whole electron momentum distribution therefore shifts in the +x direction as
in Figure 4.12c. Eventually the electron a, now at a’, is scattered by a lattice vibration.

Lattice

Empty states ‘ scattering

Electrons

(a)

Figure 4.12

(a) Energy band diagram of a metal

{b) In the absence of a field, there are as many electrons moving right as there are moving left. The motions of two electrons
at each energy cancel each other as for a and b.

(c) In the presence of a field in the —x direction, the electron a accelerates and gains energy to @’ where it is scattered to an
empty state near Ero but moving in the —x direction. The average of all momenta values is along the +x direction and results
in a net electric current.
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Typically lattice vibrations have small energies but substantial momentum. The scat-
tered electron must find an unoccupied momentum state with roughly the same energy,
and it must change its momentum substantially. The electron at «’ is therefore scattered
to an empty state around E g but with a momentum in the opposite direction. Its mo-
mentum is flipped as shown in Figure 4.12c. The average momentum of the electrons
is no longer zero but finite in the +x direction. Consequently there is a current flow
in the —x direction, along the field. as determined by this average momentum p,,.
Notice that ¢ moves up to ¢’ and b falls down to »’. Under steady-state conduction. lat-
tice scattering simply replenishes the electrons at b’ from «’. Notice that for energies
below &', for every electron moving right there is another moving left with the same
momentum magnitude that cancels it. Thus, electrons below the b’ energy level do not
contribute to conduction and are excluded from further consideration. Notice that clec-
trons above the b’ level are only moving right and their momenta are not canceled.
Thus, the conductivity is determined by the electrons in the energy range A E from b’
to a’ about the Fermi level as shown in Figure 4.12c. Further, as the energy change
from a to «’ is orders of magnitude smaller than E o, we can summarize that conduc-
tion occurs by the drift of electrons at the Fermi level.? (If we were to calculate A E for
a typical metal for typical currents, it would be ~10 6 eV whereas Er is 1-10eV. The
shift in the distribution in Figure 4.12c is very small indeed; a’ and b/, for all practical
purposes, are at the Fermi level.)

Conduction can be explained very simply and intuitively in terms of a band dia-
gram as shown in Figure 4.13. Notice that the application of the electric field bends the
energy band, because the electrostatic PE of the electron is —eV(x) where V(x) is the
voltage at position x. However, V(x) changes linearly from O to V, by virtue of
dVidx = —E,. Since E = —eV/(x) adds to the energy of the electron, the energy band
must bend to account for the additional electrostatic energy. Since only the electrons
near K, contribute to electrical conduction, we can represent this by drifting the elec-
trons at Ero down the potential hill. Although these electrons possess a very high mean
velocity (~10® ms '), as determined by the Fermi energy, they drift very slowly
(107210~ ms~1) with a velocity that is drift mobility x field.

When a metal is illuminated, provided the wavelength of the radiation is correct,
it will cause emission of electrons from the metal as in the photoelectric effect. Since
& is the “minimum energy” required to excite an electron into the vacuum level (out
from the metal), the longest wavelength radiation required is hc/A = ®.

Addition of heat to a metal can excite some of the electrons in the band to higher
energy levels. Thus heat can also be absorbed by the conduction electrons of a metal.
We also know that the addition of heat increases the amplitude of atomic vibrations.
We can therefore guess that the heat capacity of a metal has two terms which are due
to energy absorption by the lattice vibrations and energy absorption by conduction
electrons. It turns out that at room temperature the energy absorption by lattice vibra-
tions dominates the heat capacity whereas at the lowest temperatures the electronic
contribution is important.

31n some books (including the first edition of this textbook) it is stated that the electrons at Ero can gain energy from
the field and contribute to conduction but not those deep in the band (below b’). This is a simplified statement of the
fact that at a level below Ero there is one electron moving along in the +x direction and gaining energy and
another one at the same energy but moving along in the —x direction and losing energy so that an average electron
at this level does not gain energy.
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Figure 4.13 Conduction in a metal is
due to the drift of electrons around the Fermi
level.

When a voltage is applied, the energy band
is bent to be lower at the positive terminal so
that the electron’s potential energy

decreases as it moves toward the positive )
terminal. Energy-band diagram

- Ern— eV

—EB—eV

Molecular hydrogen and
helium

Liquid metallic hydrogen (with
helium)

— Possible rocky core

Figure 4.14 The interior of Jupiter is
believed to contain liquid hydrogen,
which is metallic.

SOURCE: Drawing adapted from T. Hey and Cloud tops (the atmospheric layer is
P. Walters, The Quantum Universe,

Cambridge, MA: Cambridge University Press, comparatively thin compared with Jupiter's
1988, p. 96, figure 7.1. size)

m METALLIC LIQUID HYDROGEN IN JUPITER AND ITS MAGNETIC FIELD The surface of Jupiter,
as visualized schematically in Figure 4.14, mainly consists of a mixture of molecular hydrogen
and He gases. Deep in the planet. however, the pressure is so tremendous that the hydrogen mo-
lecular bond breaks, leaving a dense ocean of hydrogen atoms. Hydrogen has only one electron
in the ls energy level. When atoms are densely packed, the ls energy level forms an energy
band, which is then only half filled. This is just like the Li metal, which means we can treat lig-
uid hydrogen as a liquid metal, with electrical properties reminiscent of liquid mercury. Liquid
hydrogen can sustain electric currents, which in turn can give rise to the magnetic fields on
Jupiter. The origin of the electric currents are not known with certainty. We do know, however,
that the core of the planet is hot and emanates heat. which causes convection currents. Temper-
ature differences can readily give rise to electric currents, by virtue of thermoelectric effects, as
discussed in Section 4.8.2.
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WHAT MAKES A METAL? The Be atom has an electronic structure of 1s22s2. Although the Be
atom has a full 25 energy level, solid Be is a metal. Why?

SOLUTION

We will neglect the K shell (1s state), which is full and very close to the nucleus, and consider
only the higher energy states. In the solid, the 2s energy level splits into N levels, forming a 2s
band. With 2N electrons, each level is occupied by spin-paired electrons. The 2s band is there-
fore full. However, the empty 2 p band, from the empty 2 p energy levels, overlaps the 2s band,
thereby providing empty energy levels to these 2N electrons. Thus, the conduction electrons are
in an energy band that is only partially filled; they can gain energy from the field to contribute
to electrical conduction. Solid Be is therefore a metal.

FERMI SPEED OF CONDUCTION ELECTRONS IN A METAL In copper, the Fermi energy
of conduction electrons is 7.0 eV. What is the speed of the conduction electrons around this
energy?

SOLUTION

Since the conduction electrons are not bound to any one atom, their PE must be zero within the
solid (but large outside), so all their energy is kinetic. For conduction electrons around the Fermi
energy Erp with a speed vr. we have

2

—mv, = Ep
F FO

2

so that

1.6 x 10°ms™'

2E 0 2(1.6 x 10719 J/eV) (7.0 V)
Vp = = —
! (9.1 x 10 ¥ kg)

m,

Although the Fermi energy depends on the properties of the energy band, to a good ap-
proximation it is only weakly temperature dependent, so vy will be relatively temperature in-
sensitive, as we will show later in Section 4.7.

EXAMPLE 4.4

43 SEMICONDUCTORS

The Si atom has 14 electrons, which distribute themselves in the various atomic energy
levels as shown in Figure 4.15. The inner shells (n = 1 and n = 2) are full and there-
fore “closed.” Since these shells are near the nucleus, when Si atoms come together to
form the solid, they are not much affected and they stay around the parent Si atoms.
They can therefore be excluded from further discussion. The 3s and 3 p subshells are
farther away from the nucleus. When two Si atoms approach, these electrons strongly
interact with each other. Therefore, in studying the formation of bands in the Si solid,
we will only consider the 3s and 3 p levels.

The first task is to examipe why Si actually bonds with four neighbors, since the
3s orbital is full and there are only two electrons in the 3 p orbitals. The full 3s orbital
should not overlap a neighbor and become involved in bonding. Since only two 3 p or-
bitals are half full, bonds should be formed with two neighboring Si atoms. In reality,
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Figure 4.15 The electronic structure of Si.
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(a) Isolated Si (b) Si just before bonding

Figure 4.16
{a) Siis in Group IV in the Periodic Table. An isolated Si atom has two electrons in the 3s
and two electrons in the 3p orbitals.

(b) When Si is about to bond, the one 3s orbital and the three 3p orbitals become
perturbed and mixed to form four hybridized orbitals, yhyb, called sp? orbitals, which are
directed toward the corners of a tetrahedron. The Yy orbital has a large major lobe and @
small back lobe. Each yhy, orbital takes one of the four valence electrons.

the 3s and 3p energy levels are quite close, and when five Si atoms approach each
other, the interaction results in the four orbitals ¥ (3s), ¥ (3p,). ¥ (3p,), and ¥ (3p.)
mixing together to form four new hybrid orbitals, which are directed in tetrahedral
directions; that is, each one is aimed as far away from the others as possible, as illus-
trated in Figure 4.16. We call this process sp® hybridization, since one s orbital and
three p orbitals are mixed. (The superscript 3 on p has nothing to do with the number
of electrons; it refers to the number of p orbitals used in the hybridization.)

The four sp* hybrid orbitals, Vhyb, €ach have one electron, so they are half occu-
pied. This means that four Si atoms can have their orbitals ¥y, overlap to form bonds
with one Si atom, which is what actually happens; thus, one Si atom bonds with four
other Si atoms in tetrahedral directions.
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In the same way, one Si atom bonds with four H atoms to form the important gas
SiHy4, known as silane, which is widely used in the semiconductor technology to fabri-
cate Si devices. In SiHy, four hybridized orbitals of the Si atom overlap with the 1s
orbitals of four H atoms. In exactly the same way, one carbon atom bonds with four
hydrogen atoms to form methane, CHj,.

There are two ways in which the hybrid orbital ¥y, can overlap with that of the
neighboring Si atom to form two molecular orbitals. They can add in phase (both pos-
itive or both negative) or out of phase (one positive and the other negative) to produce
a bonding or an antibonding molecular orbital ¥ 5 and ¥4, respectively, with energies
Ep and E4. Each Si-Si bond thus corresponds to two paired electrons in a bonding
molecular orbital 5. In the solid, there are N (~5 x 10?2cm~3) Si atoms, and there
are nearly as many such 5 bonds. The interactions between the g orbitals (i.e., the
Si—Si bonds) lead to the splitting of the E g energy level to N levels, thereby forming
an energy band labeled the valence band (VB) by virtue of the valence electrons it
contains. Since the energy level Ep is full, so is the valence band. Figure 4.17 illus-
trates the formation of the VB from Ep.

In the solid, the interactions between the N number of 4 orbitals result in the
splitting of the energy level E 4 to N levels and the formation of an energy band that is

(a) (b) fc) (d)

Whyb COOO Conduction band

- HE Energy gap, E,

Si atom |
i : Valence band

Whyb

Figure 4.17 (a) Formation of energy bands in the Si crystal first involves hybridization
of 3s and 3p orbitals to four identical Yy orbitals, which are at 109.5° to each other as
shown in (b). (c) ¥y orbitals on two neighboring Si atoms can overlap to form ¥ or Ya.
The first is bonding orbital (full) and the second is an antibonding orbital (empty). In the
crystal, ¥ overlap to give the valence band (full) and ¥4 overlap to give the conduction

band (empty) (d). Si crystal
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completely empty and separated from the full valence band by a definite energy gap E,.
In this energy region, there are no states; therefore, the electron cannot have energy
with a value within E,. The energy band formed from N4 orbitals is a conduction
band (CB), as also indicated in Figure 4.17.

The electronic states in the VB (and also in the CB) extend throughout the whole
solid, because they result from Ny p orbitals interfering and overlapping each other.
As before N g, orbitals can overlap in N different ways to produce N distinct wave-
functions ¥ that extend throughout the solid. We cannot relate a particular electron to
a particular bond or site because the wavefunctions v, corresponding to the VB ener-
gies are not concentrated at a single location. The electrical properties of solids are
based on the fact that in solids, such as semiconductors and insulators, there are certain
bands of allowed energies for the electrons, and these bands are separated by energy
gaps, that is, bandgaps. The valence and conduction bands for the ideal Si crystal
shown in Figure 4.17 are separated by an energy gap, or a bandgap, E,, in which
there are no allowed electron energy levels.

At temperatures above absolute zero, the atoms in a solid vibrate due to their
thermal energy. Some of the atoms can acquire a sufficiently high energy from thermal
fluctuations to strain and rupture their bonds. Physically, there is a possibility that the
atomic vibration will impart sufficient energy to the electron for it to surmount the
bonding energy and leave the bond. The electron must then enter a higher energy state.
In the case of Si, this means entering a state in the CB, as shown in Figure 4.18. If there
is an applied electric field £, in the +x direction, then the excited electron will be
acted on by a force —eE, and it will try to move in the —x direction. For it to do so,
there must be empty higher energy levels, so that as the electron accelerates and gains
energy, it moves up in the band. When an electron collides with a lattice vibration, it
loses the energy acquired from the field and drops down within the CB. Again, it
should be emphasized that states in an energy band are extended; that is, the electron
is not localized to any one atom.

Note also that the thermal generation of an electron from the VB to the CB leaves
behind a VB state with a missing electron. This unoccupied electron state has an
apparent positive charge, because this crystal region was neutral prior to the removal
of the electron. The VB state with the missing electron is called a‘hole and is denoted
h*. The hole can “move” in the direction of the field by exchanging places with a

Figure 4.18 Energy band diagram of a
semiconductor.

CB is the conduction band and VB is the
valence band. At O K, the VB is full with all the
valence electrons.

CB

Electron energy

Thermal

o
o —>]

excitation
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neighboring valence electron hence it contributes to conduction, as will be discussed
in Chapter 5.

CUTOFF WAVELENGTH OF A Si PHOTODETECTOR What wavelengths of light can be absorbed
by a Si photodetector given E, = 1.1 éV? Can such a photodetector be used in fiber-optic com-
munications at light wavelengths of 1.31 um and 1.55 um?

SOLUTION

The energy bandgap E, of Siis 1.1 eV. A photon must have at least this much energy to excite
an electron from the VB to the CB, where the electron can drift. Excitation corresponds to the
breaking of a Si-Si bond. A photon of less energy does not get absorbed, because its energy will
put the electron in the bandgap where there are no states. Thus, Ac/A > E, gives

he (6.6 x 107 J8)(3 x 10°ms™")

A —_— =
~E, (1.1eV)(1.6 x 10-P J/eV)

=1.13%x10"%m or 1.1 um

Since optical communications networks use wavelengths of 1.3 and 1.55 pum, these light waves
will not be absorbed by Si and thus cannot be detected by a Si photodetector.
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When an electric field E, is applied to a metal, an electron near the Fermi level can gain
energy from the field and move to higher energy levels, as shown in Figure 4.12. The
external force Fex = €, is in the x direction, and it drives the electron along x. The
acceleration of the electron is still given by a = Fex/m., where m, is the mass of the
electron in vacuum.

The law Fey = m.a cannot strictly be valid for the electron inside a solid, because
the electron interacts with the host ions and experiences internal forces Fy as it moves
around, as depicted in Figure 4.19. The electron therefore has a PE that varies with dis-
tance. Recall that we interpret mass as inertial resistance against acceleration per unit

< E, < -E
R B, ® @
»—) a= ’n—ext a= ;e;‘:

F_, ¢ e
exi
Vacuum E'") Crystal @
> X > X

(a) An external force F__ applied to an (b} An external force F_ applied fo an elec-

electron in a vacuum results in an acceler- tron in a crystal results in an acceleration

ation a,qc = Fex/me. Geryst = Fext /me".

Figure 4.19
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applied force. When an external force Fey, is applied to an electron in the vacuum level,
as in Figure 4.19a, the electron will accelerate by an amount

Fext

[4.4]

Qvac =
e
as determined by its mass m, in vacuum. _

When the same force Fy is applied to the electron inside a crystal, the accelera-
tion of the electron will be different, because it will also experience internal forces, as
shown in Figure 4.19b. Its acceleration in the crystal will be

acryst — Fext + Fmt [4.5]

me

where Fi, is the sum of all the internal forces acting on the electron, which is quite dif-
ferent than Equation 4.4. To the outside agent applying the force Fey, the electron will
appear to be exhibiting a different inertial mass, since its acceleration will be different.
It would be most useful for the external agent if the effect of the internal forces in Fiy,
could be accounted for in a simple way, and if the acceleration could be calculated from
the external force Fe, alone, through something like Equation 4.4. This is indeed
possible.

In a crystalline solid, the atoms are arranged periodically, and the variation of Fiy,
and hence the PE, or V (x), of the electron with distance along x, is also periodic. In
principle, then, the effect on the electron motion can be predicted and accounted for.
When we solve the Schrodinger equation with the periodic PE, or V (x), we essentially
obtain the effect of these internal forces on the electron motion. It has been found that
when the electron is in a band that is not full, we can still use Equation 4.4, but instead
of the mass in vacuum m,, we must use the effective mass m? of the electron in that
particular crystal. The effective mass is a quantum mechanical quantity that behaves in
the same way as the inertial mass in classical mechanics. The acceleration of the elec-
tron in the crystal is then simply

Fext

*
e

[4.6]

Aeryst =

The effects of all internal forces are incorporated into m. It should be emphasized
that m?, is obtained theoretically from the solution of the Schrodinger equation for the
electron in a particular crystal, a task that is by no means trivial. However, the effec-
tive mass can be readily measured. For some of the familiar metals, m} is very close
to m,. For example, in copper, m} = m, for all practical purposes, whereas in lithium
m} = 1,28m,, as shown in Table 4.2. On the other hand, m} for many metals and

Table 4.2 Effective mass m3 of electrons in some metals

Metal Ag Au Bi Cu K Li Na Ni Pt Zn
m*

—£ 0.99 1.10 0.047 1.01 1.12 1.28 1.2 28 13 0.85

me
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semiconductors is appreciably different than the electron mass in vacuum and can even

be negative. (m} depends on the properties of the band that contains the electron. This -

is further discussed in Section 5.11.)

4.5 DENSITY OF STATES IN AN ENERGY BAND

Although we know there are many energy levels (perhaps ~10%®) in a given band, we
have not yet considered how many states (or electron wavefunctions) there are per unit
energy per unit volume in that band. Consider the following intuitive argument. The
crystal will have N atoms and there will be N electron wavefunctions ¥, ¥, ..., ¥y
that represent the electron within the whole crystal. These wavefunctions are con-
structed from N different combinations of atomic wavefunctions, ¥4, ¥g, ¥c, ... as
schematically illustrated in Figure 4.20a,* starting with

Vi=vV¥at+V¥s+yYct+yp+- -
all the way to alternating signs ‘

Yn=VYa—VYp+V¥c—VYp+---

—>

OB - BB - —--B----B--- D

9(E)

Energy band
{a) (b) (o)

Figure 4.20

(a) In the solid there are N atoms and N extended electron wavefunctions from ¥, all the way to
¥n. There are many wavefunctions, states, that have energies that fall in the central regions of the
energy band.

(b) The distribution of states in the energy band; darker regions have a higher number of states.

(c) Schematic representation of the density of states g{E) versus energy E.

4This intuitive or?ument, as schematically depicted in Figure 4.20q, is obviously hi?hly simplified because the solid is
three-dimensional (3-D) and we should combine the atomic wavefunctions not on a linear chain but on a 3-D lattice.
In the 3-D case there are large numbers of wavefunctions with energies that fall in the central regions of the band.
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and there are N (~10%*) combinations. The lowest-energy wavefunction will be v/, con-
structed by adding all atomic wavefunctions (all in phase), and the highest-energy
wavefunction will be ¥y from alternating the signs of the atomic wavefunctions, which
will have the highest number of nodes. Between these two extremes, especially around
N/2, there will be many combinations that will have comparable energies and fall near
the middle of the band. (By analogy, if we arrange N = 10 coins by heads and tails,
there will be many combinations of coins in which there are 5 heads and 5 tails, and
only one combination in which there are 10 heads or 10 tails.) We therefore expect the
number of energy levels, each corresponding to an electron wavefunction in the crystal,
in the central regions of the band to be very large as depicted in Figure 4.20b and c.

Figure 4.20c illustrates schematically how the energy and volume density of elec-
tronic states change across an energy band. We define the density of states g(E) such
that g(E) dE is the number of states (i.e., wavefunctions) in the energy interval E to
(E + dE) per unit volume of the sample. Thus, the number of states per unit volume
up to some energy E’ is

El
S, (E") = 9(E)dE (4.7]
0

which is called the total number of states per unit volume with energies less than E’.
This is denoted S,(E").

To determine the density of states function g(E), we must first determine the num-
ber of states with energies less than E’ in a given band. This is tantamount to calculat-
ing S,(E’) in Equation 4.7. Instead, we will improvise and use the energy levels for an
electron in a three-dimensional potential well. Recall that the energy of an electron in
a cubic PE well of size L is given by

h2

= W (n% + n% + n%) [4.8]

where ny, n,, and ns are integers 1, 2, 3, ... . The spatial dimension L of the well now
refers to the size of the entire solid, as the electron is confined to be somewhere inside
that solid. Thus, L is very large compared to atomic dimensions, which means that the
separation between the energy levels is very small. We will use Equation 4.8 to de-
scribe the energies of free electrons inside the solid (as in a metal).

Each combination of n,, n,, and n3 is one electron orbital state. For example,
Yn.m.ns = Y1,1,2 1S one possible orbital state. Suppose that in Equation 4.8 E is given
as E’. We need to determine how many combinations of ny, n,, n3 (i.e., how many )
have energies less than E’, as given by Equation 4.8. Assume that (n? + n3 + n%) = n'2.
The object is to enumerate all possible choices of integers for n, n,, and n; that sat-
isfy n? + n3 +n3 < n’%

The two-dimensional case is easy to solve. Consider n? + n3 < n’? and the two-
dimensional n-space where the axes are n, and n,, as shown in Figure 4.21. The two-
dimensional space is divided by lines drawn at ny = 1,2,3,... and n, = 1,2,3, ...
into infinitely many boxes (squares), each of which has a unit area and represents a
possible state ¥, ,,. For example, the state n; = 1, n, = 3 is shaded, as is that for
n; = 2, ny = 2.
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2 2 _ 2
nl + n2 n
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3 %
1o
7
n
2 Z/
1
— N < n
0 112 3 4 5 6
—n, n=2n,=2 n
Figure 4.21 Each state, or electron wavefunction in Figure 4.22 In three dimensions, the volume defined
the crystal, can be represented by a box at m, ny. by a sphere of radius n’ and the positive axes ny, ny,
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and ng, contains all the possible combinations of positive

m, np, and n3 values that satisfy n? + n3 + n3 < n2.

Clearly, the area contained by n;, n, and the circle defined by n'? = n? + n3 (just like

r? = x2 + y?) is the number of states that satisfy n? + n3 < n’2. This area is (7 n'?).
In the three-dimensional case, n} + n3 + n3 < n’? is required, as indicated in Fig-

ure 4.22. This is the volume contained by the positive n, n,, and n; axes and the sur-
face of a sphere of radius n’. Each state has a unit volume, and within the sphere,

n} + nZ + n3 < n'? is satisfied. Therefore, the number of orbital states Sy (n’) Within

this volume is given by
1/4 1
Sop(n) = §<§nn'3) = gnn'3

Each orbital state can take two electrons with opposite spins, which means that the
number of states, including spin, is given by

1
S(n') = 2Sew(n) = gnn“

We need this expression in terms of energy. Substituting n’? = 8m,L?E’/ h? from

Equation 4.8 in S(n’), we get
s(E"y = TL@mEY
3h3

Since L3 is the physical volume of the solid, the number of states per unit volume
Sy(E’) with energies E < E' is
7 (8m,E")3/?

SW(E') = BETYY S [4.9]
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Furthermore, from Equation 4.7, d S, /dE = g(E). By differentiating Equation 4.9
with respect to energy, we get

3/2
9(E) = (8n2‘/2)<%) E'? [4.101

Equation 4.10 shows that the density of states g(E) increases with energy as E!/?
from the bottom of the band. As we approach the top of the band, according to our
understanding in Figure 4.20d, g(E) should decrease with energy as (Ep, — E)12,
where E\q, is the top of the band, so that as E — E,,, g(E) — 0. The electron mass
m. in Equation 4.10 should be the effective mass m} as in Equation 4.6. Further, Equa-
tion 4.10 strictly applies only to free electrons in a crystal. However, we will frequently
use it to approximate the true g(E) versus E behavior near the band edges for both
metals and semiconductors.

Having found the distribution of the electron energy states, Equation 4.10, we now
wish to determine the number of states that actually contain electrons; that is, the prob-
ability of finding an electron at an energy level E. This is given by the Fermi—Dirac
statistics.

As an example, one convenient way of calculating the population of a city is to
find the density of houses in that city (i.e., the number of houses per unit area), multi-
ply that by the probability of finding a human in a house, and finally, integrate the
result over the area of the city. The problem is working out the chances of actually
finding someone at home, using a mathematical formula. For those who like analogies,
if g(A) is the density of houses and f(A) is the probability that a house is occupied,
then the population of the city is

n= f(A)g(A) dA
City

where the integration is done over the entire area of the city. This equation can be used
to find the number of electrons per unit volume within a band. If E is the electron en-
ergy and f(E) is the probability that a state with energy E is occupied, then

n= F(E)Y(E) dE
Band

where the integration is done over all the energies of the band.

EXAMPLE 4.6

X-RAY EMISSION AND THE DENSITY OF STATES IN A METAL Consider what happens when a
metal such as Al is bombarded with high-energy electrons. The inner atomic energy levels are
not disturbed in the solid, so these inner levels remain as distinct single levels, each one local-
ized to the parent atom. When an energetic electron hits an electron in one of the inner atomic
energy levels, it knocks out this electron from the metal leaving behind a vacancy in the inner
core as depicted in Figure 4.23a. An electron in the energy band of the solid can then fall down
to occupy this empty state and emit a photon in the process. The energy difference between the
energies in the band and the inner atomic level is in the X-ray range, so the emitted photon is an
X-ray photon. Since electrons occupy the band from the bottom Ep to the Fermi level E, the
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Figure 4.23

(a) High-energy electron bombardment knocks out an electron from the closed inner L shell leaving
an empty state. An electron from the energy band of the metal drops into the L shell to fill the
vacancy and emits a soft X-ray photon in the process.

(b) The spectrum (intensity versus photon energy) of soft X-ray emission from a metal involves a
range of energies corresponding to transitions from the bottom of the band and from the Fermi
level to the L shell. The intensity increases with energy until around E where it drops sharply.

(c) and (d) contrast the emission spectra from a solid and vapor {isolated gas atoms).

emitted X-ray photons have a range of energies corresponding to transitions from E and Ef to
the inner atomic level as shown in Figure 4.23b. These energies are in the soft X-ray spectrum.
We assumed that the levels above E are almost empty, though, undoubtedly, there is no sharp
transition from full to empty levels at E . Further, since the density of states increases from Ep
toward E r, there are more and more electrons that can fall down to the atomic level as we move
from Ep toward E . Therefore the intensity of the emitted X-ray radiation increases with en-
ergy until the energy reaches the Fermi level beyond which there are only a small number of
electrons available for the transit. Figure 4.23¢ and d contrasts the emission spectra from an alu-
minum crystal (solid) and its vapor. The line spectra from a vapor become an emission band in
the spectrum of the solid.

The X-ray intensity emitted from Al in Figure 4.23 starts to rise at around 60 eV and then
sharply falls around 72 eV. Thus the energy range is 12 eV, which represents approximately the
Fermi energy with respect to the bottom of the band, that is, Er ~ 72 — 60 = 12 eV with re-
spectto Ep.
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30V IEWE DENSITY OF STATES IN A BAND Given that the width of an energy band is typically ~10 eV,
calculate the following, in per cm® and per eV units:

a. The density of states at the center of the band. .

b. The number of states per unit volume within a small energy range kT about the center.

¢. The density of states at k7 above the bottom of the band.

d. The number of states per unit volume within a small energy range of kT to 2kT from the
bottom of the band.

SOLUTION

The density of states, or the number of states per unit energy range per unit volume g(E), is
given by

m 3/2
. g(E) = (8;:2“2)(}1—;> E'?
which gives the number of states per cubic meter per Joule of energy. Substituting E = 5 eV, we

have

9.1 x 1073

3/2
m] Gx1.6x 1072 =950 x 10¥m™3J!

Geemter = (8”2”2)[

Converting to cm™ and eV~!, we get
Geenter = (9:50 x 10 m~3J=1)(107¢m3 cm~3)(1.6 x 107 JeV™')
=152 x 10%cm~3eV™!

If 8E is a small energy range (such as kT'), then, by definition, g(E) 8E is the number
of states per unit volume in 8E. To find the number of states per unit volume within k7" at the
center of the band, we multiply g..... by kT or (1.52 x 102 cm~3eV~')(0.026 eV) to get
3.9 x 10%° cm™3. This is not a small number!

At kT above the bottom of the band, at 300 K (kT = 0.026 eV), we have

9.1 x 103

3/2
m] (0.026 x 1.6 x 1071%)!/2
. X -

9o.026 = (87721/2)[

=6.84 x 10" m=3J"!
Converting to cm™> and eV~! we get
o026 = (6.84 x 10¥ m~3J1)(10* m3 cm~3)(1.6 x 10~ JeV™!)
=1.10 x 10¥ cm~%eV~!
Within kT, the volume density of states is
(1.10 x 10* cm~3eV~')(0.026 eV) = 2.8 x 10" cm™3

This is very close to the bottom of the band and is still very large.
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TOTAL NUMBER OF STATES IN A BAND EXAMPLE 4.8

a. Based on the overlap of atomic orbitals to form the electron wavefunction in the crystal,
how many states should there be in a band?

b. Consider the density of states function
m 3/2
g(E) = (8772”2)(}‘—2’) E'?

By integrating g(E), estimate the total number of states in a band per unit volume, and com-
pare this with the atomic concentration for silver. For silver, we have Erp = 5.5 eV and
® = 4.5 eV. (Note that “state” means a distinct wavefunction, including spin.)

SOLUTION

a. We know that when N atoms come together to form a solid, N atomic orbitals can overlap
N different ways to produce N orbitals or 2N states in the crystal, since each orbital has two
states, spin up and spin down. These states form the band.

b. For silver, Erp = 5.5 eV and ® = 4.5 eV, so the width of the energy band is 10 eV. To
estimate the total volume density of states, we assume that the density of states g(E)
reaches its maximum at the center of the band E = E .er = S €V. Integrating g(E) from
the bottom of the band, E = 0, to the center, E = E cn:, yields the number of states per
unit volume up to the center of the band. This is half the total number of states in the whole
band, that is, %Sba,,d, where Sy..q is the number of states per unit volume in the band and is

determined by
1 Ecenter 167[21/2 m 3/2
5 Soana = /0 9(E) dE = — (ﬁ) Elie
or
1 167:21/2[ 9.1 x 1073 kg ]3/2
= Stand = 5eV x 1.6 x 10719 J/eV)3/2
2% = T e x 10w gz OV x16x V)
=5.08 x 102m~3 =5.08 x 102cm™3
Thus

Spand = 10.16 x 102 states cm ™3

We must now calculate the number of atoms per unit volume in silver. Given the
density d = 10.5 g cm™? and the atomic mass M, = 107.9 g mol~! of silver, the atomic
concentration is

_dN,

3
nAg =

= 5.85 x 10?2 atoms cm™

at

As expected, the density of states is almost twice the atomic concentration, even
though we used a crude approximation to estimate the density of states.
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4.6 STATISTICS: COLLECTIONS OF PARTICLES

4.6.1 BOLTZMANN CLASSICAL STATISTICS

Given a collection of particles in random motion and colliding with each other,” we
need to determine the concentration of particles in the energy range E to (E + dE).
Consider the process shown in Figure 4.24, in which two electrons with energies E;
and E; interact and then move off in different directions, with energies E; and E,. Let
the probability of an electron having an energy E be P (E), where P (E) is the fraction
of electrons with an energy E. Assume there are no restrictions to the electron energies,
that is, we can ignore the Pauli exclusion principle. The probability of this event is then
P(E)) P(E,). The probability of the reverse process, in which electrons with energies
E3 and E4 interact, is P(E;) P(E,4). Since we have thermal equilibrium, that is, the
system is in equilibrium, the forward process must be just as likely as the reverse
process, SO

P(E|)P(E;) = P(E3)P(E4) [4.11]
Furthermore, the energy in this collision must be conserved, so we also need
E +E,=E; + E, [4.12]

We therefore need to find the P(E) that satisfies both Equations 4.11 and 4.12.
Based on our experience with the distribution of energies among gas molecules, we
can guess that the solution for Equations 4.11 and 4.12 would be

E
P(E) = Aexp( kT) [4.13]
where k is the Boltzmann constant, T is the temperature, and A is a constant. We
can show that Equation 4.13 is a solution to Equations 4.11 and 4.12 by a simple
substitution. Equation 4.13 is the Boltzmann probability function and is shown in
Figure 4.25. The probability of finding a particle at an energy E therefore decreases
exponentially with energy. We assume, of course, that any number of particles may
have a given energy E. In other words, there is no restriction such as permitting
only one particle per state at an energy E, as in the Pauli exclusion principle. The
term k7T appears in Equation 4.13 because the average energy as calculated
by using P(E) then agrees with experiments. (There is no £T in Equations 4.11
and 4.12.)

Suppose that we have N, particles at energy level E; and N, particles at a higher
energy E,. Then, by Equation 4.13, we have

N2—ex( E2—E1> [4.14]
N, P kT :

5 From Chapter 1, we can associate this with the kinetic theory of gases. The energies of the gas molecules, which
are moving around randomly, are distributed according to the Maxwell-Boltzmann statistics.
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Figure 4.24 Two electrons with initial Figure 4.25 The Boltzmann
wavefunctions y1 and v at Ey and E; interact energy distribution describes the
and end up at different energies E3 and Ej. statistics of particles, such as electrons,
Their corresponding wavefunctions are yr3 when there are many more available
and . states than the number of particles.

If E, — E; > kT, then N, can be orders of magnitude smaller than N;. As the
temperature increases, N,/N; also increases. Therefore, increasing the temperature
populates the higher energy levels.

Classical particles obey the Boltzmann statistics. Whenever there are many
more states (by orders of magnitude) than the number of particles, the likelihood of
two particles having the same set of quantum numbers is negligible and we do not
have to worry about the Pauli exclusion principle. In these cases, we can use the
Boltzmann statistics. An important example is the statistics of electrons in the con-
duction band of a semiconductor where, in general, there are many more states than
electrons.

4.6.2 FERMI-DIRAC STATISTICS

Now consider the interaction for which no two electrons can be in the same quantum
state, which is essentially obedience to the Pauli exclusion principle, as shown in Fig-
ure 4.24. We assume that we can have only one electron in a particular quantum state
¥ (including spin) associated with the energy value E. We therefore need those states
that have energies E; and E, to be not occupied. Let f(E) be the probability that an
electron is in such a state, with energy E in this new interaction environment. The prob-
ability of the forward event in Figure 4.24 is

FEDf(E1 — f(E] — f(E)]

The square brackets represent the probability that the states with energies E; and E,
are empty. In thermal equilibrium, the reverse process, the electrons with E3 and E,4
interacting to transfer to E; and E, has just as equal a likelihood as the forward process.
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| SOURCE: Courtesy of AIP Emilio Segré Visual Archives.

Thus, f(E) must satisfy the equation
FEDF(ED = fF(EDIL = f(ED] = f(E3) f(ED — fFEDIL — f(E2)] [4.15]

In addition, for energy conservation, we must have

) Ei+E,=E3;+ E4 [4.16]
By an “intelligent guess,” the solution to Equations 4.15 and 4.16 is
1
f(E) = [4.17]

E
1+ Aexp(;—T—)

where A is a constant. You can check that this is a solution by substituting Equation 4.17
into 4.15 and using Equation 4.16. The reason for the term k7 in Equation 4.17 is not
obvious from Equations 4.15 and 4.16. It appears in Equation 4.17 so that the mean
properties of this system calculated by using f(E) agree with experiments. Letting
A = exp(—EFr/kT), we can write Equation 4.17 as

1
Fermi-Dirac \ f(E) = [4.18]

.. E - Efr
statistics 1+ CXP( )
kT

where Er is a constant called the Fermi energy. The probability of finding an electron
in a state with energy E is given by Equation 4.18, which is called the Fermi-Dirac
function.

The behavior of the Fermi-Dirac function is showiin Figure 4.26. Note the effect
of temperature. As T increases, f(E) extends to high:r\z\;lwgies. At energies of a few
kT (0.026 eV) above Ef, f(E) behaves almost like the Boltzmann function

(E — EF)]

E—-E kT 4.19
T ( F) > [4.19]

f(E) = exp[—
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Figure 4.26

The Fermi-Dirac function f(E) describes the statistics of electrons in
1 > f(E) a solid. The electrons interact with each other and the environment,
obeying the Pauli exclusion principle.

=

Above absolute zero, at E = Ef, f(Efr) = % We define the Fermi energy as that
energy for which the probability of occupancy f(Er) equals % The approximation to
f(E) in Equation 4.19 at high energies is often referred to as the Boltzmann tail to the
Fermi—Dirac function.

47 QUANTUM THEORY OF METALS

47.1 FREE ELECTRON MODELS

We know that the number of states g(E) for an electron, per unit energy per unit vol-
ume, increases with energy as g(E) o« E'/2, We have also calculated that the probabil-
ity of an electron being in a state with an energy E is the Fermi—Dirac function f(E).
Consider the energy band diagram for a metal and the density of states g(E) for that
band, as shown in Figure 4.27a and b, respectively.

At absolute zero, all the energy levels up to Er are full. At 0 K, f(FE) has the step
form at Ef (Figure 4.26). This clarifies why E¢ in f(E) is termed the Fermi energy.
AtOK, f(E)=1forE < Er,and f(E) = 0for E > Ef,soat0K, Ef separates the
empty and full energy levels. This explains why we restricted ourselves to 0 K or
thereabouts when we introduced Er in the band theory of metals.

At some finite temperature, f(E) is not zero beyond Er, as indicated in Fig-
ure 4.27c. This means that some of the electrons are excited to, and thereby occupy,
energy levels above Er. If we multiply g(E), by f(E), we obtain the number of elec-
trons per unit energy per unit volume, denoted ng. The éi\s-5ibution of electrons in the
energy levels is described by ng = g(E) f(E).

Since f(E) = 1 for E « Er, the states near the bottom of the band are all occu-
pied; thus, ng o« E'/? initially. As E passes through Ef, f(E) starts decreasing

| ¢The free electron model of metals is also known as the Sommerfeld model.
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E
EF+ 0]

L fAE)  ng=gERE)
(ol (b) (d (d)

Figure 4.27

(a) Above O K, due to thermal excitation, some of the electrons are at energies above Er.
(b) The density of states, g(E) versus E in the band.

(c) The probability of occupancy of a state at an energy E is f(E).

(d) The product g(E)f(E) is the number of electrons per unit energy per unit volume, or the electron
concentration per unit energy. The area under the curve on the energy axis is the concentration of

electrons

Fermi energy
atT=0K

in the band.

sharply. As aresult, ng takes a turn and begins to decrease sharply as well, as depicted
in Figure 4.27d.

In the small energy range E to (E + dE), there are ng dE electrons per unit
volume. When we sum all ng dE from the bottom to the top of the band (E = 0 to
E = Efr + ), we get the total number of valence electrons per unit volume, n, in the
metal, as follows:

Top of band Top of band
n=f nEdE=/ 9(E)f(E)dE [4.20]
0 0

Since f(FE) falls very sharply when E > Ef, we can carry the integration to
E = oo, rather than to (Efr + &), because f — 0 when E > E. Putting in the func-
tional forms of g(E) and f(E) (e.g., from Equations 4.10 and 4.18), we obtain

8 2!2m3% [ E'2dE
n= h3 /; : E—E F)
E ( ~ kT
If we could integrate this, we would obtain an expression relating n and Er. At
0K, however, Er = Ero and the integrand exists only for E < Efgo. If we integrate at

0 K, Equation 4.21 yields
h? \ (3n\*?
Epo = ( ) (——) [4.22]
8m, b4

[4.21]
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It may be thought that Er is temperature independent, since it was sketched that
way in Figure 4.26. However, in our derivation of the Fermi—Dirac statistics, there was
no restriction that demanded this. Indeed, since the number of electrons in a band is
fixed, EF at a temperature T is implicitly determined by Equation 4.21, which can be
solved to express Er in terms of n and T. It turns out that at 0 K, E is given by Equa-
tion 4.22, and it changes very little with temperature. In fact, by utilizing various math-
ematical approximations, it is not too difficult to integrate Equation 4.21 to obtain the
Fermi energy at a temperature 7, as follows:

2/ kT \?
Er(T) = Ero [1 - %(E—) } [4.23]
FO

which shows that E »(T) is only weakly temperature dependent, since Erp > kT.
The Fermi energy has an important significance in terms of the average energy E,,

of the conduction electrons in a metal. In the energy range E to (E + dE), there are

ng dE electrons with energy E. The average energy of an electron will therefore be

f En E dE
E, = —— [4.24
? f nEg dE ]
If we substitute g(E) f (E) for ng and integrate, the result at 0 K is
3
En(0) = ngo [4.25]

Above absolute zero, the average energy is approximately

3 572 [ kT \*
E.(T)= 'S‘E.FO 1+ —12— E—— [4.26]
FO

Since Erp > kT, the second term in the square brackets is much smaller than
unity, and E,,(T) shows only a very weak temperature dependence. Furthermore, in
our model of the metal, the electrons are free to move around within the metal, where
their potential energy PE is zero, whereas outside the metal, it is Er + ® (Figure 4.11).
Therefore, their energy is purely kinetic. Thus, Equation 4.26 gives the average KE of

the electrons in a metal
1 ) 3
\Zmeve = Ey ~ EEFO

where v, is the root mean square (rms) speed of the electrons, which is simply called
the effective speed. The effective speed v, depends on the Fermi energy Ero and is
relatively insensitive to temperature. Compare this with the behavior of molecules in
an ideal gas. In that case, the average KE = 3kT, so jmv? = 2kT. Clearly, the aver-
age speed of molecules in a gas increases with temperature.

The relationship %m vg ~ %Epo is an important conclusion that comes from the
application of quantum mechanical concepts, ideas that lead to g(E) and f(E) and so
on. It cannot be proved without invoking quantum mechanics. The fact that the aver-
age electronic speed is nearly constant is the only way to explain the observation that
the resistivity of a metal is proportional to T (and not T3/?), as we saw in Chapter 2.
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4.7.2 CONDUCTION IN METALS

We know from our energy band discussions that in metals only those electrons in a
small range A E around the Fermi energy Er contribute to electrical conduction as
shown in Figure 4.12c. The concentration ny of these electrons is approximately
9(Efr) AE inasmuch as AFE is very small. The electron a moves to a’, as shown in
Figure 4.12b and c, and then it is scattered to an empty state above b'. In steady
conduction, all the electrons in the energy range A E that are moving to the right are
not canceled by any moving to the left and hence contribute to the current. An elec-
tron at the bottom of the A E range gains energy A E to move a’ in a time interval At
that corresponds to the scattering time 7. It gains a momentum Ap,. Since Ap, /At =
external force = eE,, we have Ap, = teE,. The electron a has an energy
E = p?/(2m%) which we can differentiate to obtain AE when the momentum
changes by Ap,,
. -
= &Ap, = (me—vp)(ref,,) = evrTE,
e mg

AE

The current J; is due to all the electrons in the range A E which are moving toward
the right in Figure 4.12c,

Jy = enpvr = e[g(Er) AElvr = e[g(EF)evrTE,Jvr = e’v;T1g(EF)E,
The conductivity is therefore
o= e2v§tg(Ep)

However, the numerical factor is wrong because Figure 4.12c considers only a hy-
pothetical one-dimensional crystal. In a three-dimensional crystal, the conductivity is
one-third of the conductivity value just determined:

1
o= é-ezv%rg(Ep) [4.27]

This conductivity expression is in sharp contrast with the classical expression in
which all the electrons contribute to conduction. According to Equation 4.27, what is
important is the density of states at the Fermi energy g(E ). For example, Cu and Mg
are metals with valencies I and II. Classically, Cu and Mg atoms each contribute one
and two conduction electrons, respectively, into the crystal. Thus, we would expect Mg
to have higher conductivity. However, the Fermi level in Mg is where the top tail of the
3s band overlaps the bottom tail of the 3p band where the density of states is small. In
Cu, on the other hand, Er is nearly in the middle of the 4s band where the density of
states is high. Thus, Mg has a lower conductivity than Cu.

The scattering time 7 in Equation 4.27 assumes that the scattered electrons at Ex
remain in the same energy band. In certain metals, there are two different energy
bands that overlap at E . For example, in Ni (see Figure 4.61), 3d and 4s bands over-
lap at Er. An electron can be scattered from the 4s to the 3d band, and vice versa.
Electrons in the 3d band have very low drift mobilities and effectively do not
contribute to conduction, so only g(Er) of the 4s band operates in Equation 4.27.
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Since 4s to 3d band scattering is an additional scattering mechanism, by virtue of
Matthiessen’s rule, the scattering time t for the 4s band electrons is shortened. Thus,
Ni has poorer conductivity than Cu.

In deriving Equation 4.27 we did not assume a particular density of states
model. If we now apply the free electron model for g(EF) as in Equation 4.10, and
also relate Er to the total number of conduction electrons per unit volume 7 as in
Equation 4.22, we would find that the conductivity is the same as the Drude model,
that is,

ent Drude model
o= - 14.28]  and free
Me electrons

MEAN SPEED OF CONDUCTION ELECTRONS IN A METAL Calculate the Fermi energy Ero at J3EV gV R
0 K for copper and estimate the average speed of the conduction electrons in Cu. The density of
Cu is 8.96 g cm™3 and the relative atomic mass (atomic weight) is 63.5.

SOLUTION

Assuming each Cu atom donates one free electron, we can find the concentration of elecirons.
from the density d, atomic mass M,,, and Avogadro’s number N4, as follows:

dN, _ 8.96 x 6.02 x 102
My 63.5

=8.5x 102cm™3 or 8.5 x 10¥m™3

n =

The Fermi energy at 0 K is given by Equation 4.22:

h? 3n\*?
£ro = () (5)
8m, /4

Substituting » = 8.5 x 10%® m™3 aad the values for 4 and m,, we obtain
Ero=11x10"%] or 7eV

To estimate the mean speed of the electrons, we calculate the rms speed v, from
Imo? = £ Ero. The mean speed will be close to the rms speed. Thus, v, = (6Ero/5m.)'/2.
Substituting for Erp and m,, we find v, = 1.2 x 105 ms~!.

CONDUCTION IN SILVER Consider silver whose density of states g(E) was calculated
Example 4.8, assuming a free electron model for g(E) as in Equation 4.10. For silver,

Er = 5.5eV, so from Equation 4.10, the density of states at E is g(Er) = 1.60 x 102 m~3

eV~!. The velocity of Fermi electrons, vy = (2Er/m,)'/? = 1.39 x 10% m s~!. The conduc-

tivity o of Ag at room temperature is 62.5 x 10° Q~! m~'. Substituting for o, g(Er), and vp

in Equation 4.27,

1.60 x 1028)

1 1 - -
0 = 62.5 x 10° = 2eluirg(Ep) = 7(1.6 x 107%)*(1.39 x 10%)’z (1.6 < 10-7

we find t == 3.79 x 10~'* 5. The mean free path £ = vrt =53 nm. The drift mobility of Er
electrons is u = er/m, =67 cm?* V-! 57!,
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From Example 4.8, since Ag has a valency of I, the concentration of conduction electrons
isn = na, = 5.85 x 10%® m™3. Substituting for n and o in Equation 4.28 gives

ent _ (L6 x 10~19)2(5.85 x 10%¥)r
m, . (9.1 x 10-31)

we find T = 3.79 x 107!* s as expected because we have used the free electron model.

o =62.5x 10° =

4.8 FERMI ENERGY SIGNIFICANCE

4.8.1 METAL-METAL CONTACTS: CONTACT POTENTIAL

Suppose that two metals, platinum (Pt) with a work function 5.36 eV and molybdenum
(Mo) with a work function 4.20 eV, are brought together, as shown in Figure'4.28a. We
know that in metals, all the energy levels up to the Fermi level are full. Since the Fermi
level is higher in Mo (due to a smaller ®), the electrons in Mo are more energetic.
They therefore immediately go over to the Pt surface (by tunneling), where there are
empty states at lower energies, which they can occupy. This electron transfer from Mo
to the Pt surface reduces the total energy of the electrons in the Pt—Mo system, but at
the same time, the Pt surface becomes negatively charged with respect to the Mo sur-
face. Consequently, a contact voltage (or a potential difference) develops at the junc-
tion between Pt and Mo, with the Mo side being positive.

The electron transfer from Mo to Pt continues until the contact potential is large
enough to prevent further electron transfer: the system reaches equilibrium. It should
be apparent that the transfer of energetic electrons from Mo to Pt continues until the
two Fermi levels are lined up, that is, until the Fermi level is uniform and the same in
both metals, so that no part of the system has more (or less) energetic electrons, as

P (Pt) -P(Mo) =1.16eV =eAV

Vacuum
Pt Mo >

vacuum vacuum =) >
> N ©
° < © Vacuum
Vel ] [32] >
o Fermi level || n Pt
n < Fermi level <
g . @ I
>~ Fermi level 4 -+
o Electrons -+

Electrons =+
(a) Electrons are more energetic in Mo, so (b) Equilibrium is reached when the Fermi
they tunnel to the surface of Pt. levels are lined up.

Figure 4.28 When two metals are brought together, there is a contact potential AV.
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Figure 4.29 There is no current when a closed circuit is formed
by two different metals, even though there is a contact potential at
each contact.

The contact potentials oppose each other.

illustrated in Figure 4.28b. Otherwise, the energetic electrons in one part of the system
will flow toward a region with lower energy states. Under these conditions, the Pt-Mo
system is in equilibrium. The contact voltage AV is determined by the difference in
the work functions, that is,

e AV = &(Pt) — d(Mo) =5.36eV —4.20eV = 1.16eV

We should note that away from the junction on the Mo side, we must still provide
an energy of ® = 4.20 eV to free an electron, whereas away from the junction on the
Pt side, we must provide ® = 5.36 eV to free an electron. This means that the vacuum
energy level going from Mo to Pt has a step A at the junction. Since we must do
work equivalent to A® to get a free electron (e.g., on the metal surface) from the Mo
surface to the Pt surface, this represents a voltage of A® /e or 1.16 V.

From the second law of thermodynamics,’ this contact voltage cannot do work;
that is, it cannot drive current in an external circuit. To see this, we can close the
Pt metal-Mo metal circuit to form a ring, as depicted in Figure 4.29. As soon as we
close the circuit, we create another junction with a contact voltage that is equal and op-
posite to that of the first junction. Consequently, going around the circuit, the net volt-
age is zero and the current is therefore zero.

There is a deep significance to the Fermi energy E r, which should at least be men-
tioned. For a given metal the Fermi energy represents the free energy per electron
called the electrochemical potential 1. In other words, the Fermi energy is a measure
of the potential of an electron to do electrical work (e x V) or nonmechanical work,
through chemical or physical processes.® In general, when two metals are brought into
contact, the Fermi level (with respect to a vacuum) in each will be different. This
difference means a difference in the chemical potential A, which in turn means that
the system will do external work, which is obviously not possible. Instead, electrons
are immediately transferred from one metal to the other, until the free energy per elec-
tron u for the whole system is minimized and is uniform across the two metals, so that

7 By the way, the second law of thermodynamics simply says that you cannot extract heat from a system in thermal
equilibrium and do work (i.e., charge x voltage).

8 A change in any type of PE can, in principle, be used to do work, that is, A(PE) = work done. Chemical PE is the
potential to do nonmechanical work (e.g., electrical work) by virtue of physical or chemical processes. The chemical
PE per electron is Er and AEr = electrical work per electron.
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Ap = 0. We can guess that if the Fermi level in one metal could be maintained at a
higher level than the other, by using an external energy source (e.g., light or heat), for
example, then the difference could be used to do electrical work.

4.8.2 THE SEEBECK EFFECT AND THE THERMOCOUPLE

Consider a conductor such as an aluminum rod that is heated at one end and cooled at
the other end as depicted in Figure 4.30. The electrons in the hot region are more en-
ergetic and therefore have greater velocities than those in the cold region.’

Consequently there is a net diffusion of electrons from the hot end toward the cold
end which leaves behind exposed positive metal ions in the hot region and accumu-
lates electrons in the cold region. This situation prevails until the electric field devel-
oped between the positive ions in the hot region and the excess electrons in the cold re-
gion prevents further electron motion from the hot to the cold end. A voltage therefore
develops between the hot and cold ends, with the hot end at positive potential. The
potential difference AV across a piece of metal due to a temperature difference AT is
called the Seebeck effect.'® To gauge the magnitude of this effect we introduce a
special coefficient which is defined as the potential difference developed per unit tem-
perature difference, or

dv

= — 4.2
a7 (4.29]

By convention, the sign of S represents the potential of the cold side with respect
to the hot side. If electrons diffuse from the hot end to the cold end as in Figure 4.30,
then the cold side is negative with respect to the hot side and the Seebeck coefficient is
negative (as for aluminum).

In some metals, such as copper, this intuitive explanation fails to explain why elec-
trons actually diffuse from the cold to the hot region, giving rise to positive Seebeck
coefficients; the polarity of the voltage in Figure 4.30 is actually reversed for copper.
The reason is that the net diffusion process depends on how the mean free path £ and
the mean free time (due to scattering from lattice vibrations) change with the electron
energy, which can be quite complicated. Typical Seebeck coefficients for various se-
lected metals are listed in Table 4.3.

Consider two neighboring regions H (hot) and C (cold) with widths corresponding
to the mean free paths £ and ¢’ in H and C as depicted in Figure 4.31a. Half the electrons
in H would be moving in the +x direction and the other half in the —x direction. Half of
the electrons in H therefore cross into C, and half in C cross into H. Suppose that, very
roughly, the electron concentration » in H and C is about the same. The number of elec-
trons crossing from H to C is %ne, and the number crossing from C to H is %ne’. Then,

Net diffusion from H to C o 3n(€ — £) [4.30]

9 The conduction electrons around the Fermi energy have a mean speed that has only a small temperature
dependence. This small change in the mean speeJ with temperature is, nonetheless, intuitively significant in
appreciating the thermoelectric effect. The actual effect, however, depends on the mean free path as discussed later.
19 Thomas Seebeck observed the thermoelectric effect in 1821 using two different metals as in the thermocouple,
which is the only way to observe the phenomenon. It was William Thomson (Lord Kelvin) who explained the
observed effect.
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