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Dielectric Materials and Insulation

The familiar parallel plate capacitor equation with free space as an insulator is given by

g,A
d

where ¢, is the absolute permittivity, A is the plate area, and d is the separation between
the plates. If there is a material medium between the plates, then the capacitance, the
charge storage ability per unit voltage, increases by a factor of ¢,, where ¢, is called
the dielectric constant of the medium or its relative permittivity. The increase in the
capacitance is due to the polarization of the medium in which positive and negative
charges are displaced with respect to their equilibrium positions. The opposite surfaces
of the dielectric medium acquire opposite surface charge densities that are related to the
amount of polarization in the material. An important concept in dielectric theory is that
of an electric dipole moment p, which is a measure of the electrostatic effects of a pair
of opposite charges + Q and — Q separated by a finite distance a, and so is defined by

C =

p=Qa

Although the net charge is zero, this entity still gives rise to an electric field in space
and also interacts with an electric field from other sources. The relative permittivity is
a material property that is frequency dependent. Some capacitors are designed to work
at low frequencies, whereas others have a wide frequency range. Furthermore, even
though they are regarded as energy storage devices, all practical capacitors exhibit
some losses when used in an electric circuit. These losses are no different than I’R
losses in a resistor carrying a current. The power dissipation in a practical capacitor
depends on the frequency, and for some applications it can be an important factor. A
defining property of a dielectric medium is not only its ability to increase capacitance
but also, and equally important, its insulating behavior or low conductivity so that
the charges are not conducted from one plate of the capacitor to the other through the
dielectric. Dielectric materials often serve to insulate current-carrying conductors or
conductors at different voltages. Why can we not simply use air as insulation between
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high-voltage conductors? When the electric field inside an insulator exceeds a critical
field called the dielectric strength, the medium suffers dielectric breakdown and a
large discharge current flows through the dielectric. Some 40 percent of utility gener-
ator failures are linked to insulation failures in the generator. Dielectric breakdown is
probably one of the oldest electrical engineering problems and that which has been
most widely studied and never fully explained.

7.1 MATTER POLARIZATION AND RELATIVE
PERMITTIVITY

7.1.1 RELATIVE PERMITTIVITY: DEFINITION

We first consider a parallel plate capacitor with vacuum as the dielectric medium
between the plates, as shown in Figure 7.1a. The plates are connected to a constant volt-
age supply V. Let O, be the charge on the plates. This charge can be easily measured.
The capacitance C, of the parallel plate capacitor in free space, as in Figure 7.1a, is
defined by

2,

v [7.1]

C, =

The electric field, directed from high to low potential, is defined by the gradient of

the potential £ = —dV /dx. Thus, the electric field £ between the plates is just V/d
where d is the separation of the plates.
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Figure 7.1

{a) Parallel plate capacitor with free space between the plates.

(b) As a slab of insulating material is inserted between the plates, there is an external current
flow indicating that more charge is stored on the plates.

(c) The capacitance has been increased due to the insertion of a medium between the plates.
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Consider now what happens when a dielectric slab (a slab of any nonconducting
material) is inserted into this parallel plate capacitor, as shown in Figure 7.1b and ¢
with V kept the same. During the insertion of the dielectric slab, there is an external
current flow that indicates that there is additional charge being stored on the plates.
The charge on the electrodes increases from Q, to Q. We can easily measure the
extra charge O — Q, flowing from the battery to the plates by integrating the ob-
served current in the circuit during the process of insertion, as shown in Figure 7.1b.
Because there is now a greater amount of charge stored on the plates, the capacitance
of the system in Figure 7.1c is larger than that in Figure 7.1a by the ratio Q to Q,.
The relative permittivity (or the dielectric constant) ¢, is defined to reflect this in-
crease in the capacitance or the charge storage ability by virtue of having a dielectric
medium. If C is the capacitance with the dielectric medium as in Figure 7.1c, then by
definition

C
8’, = — = E— [7.2]

The increase in the stored charge is due to the polarization of the dielectric by the
applied field, as explained below. It is important to remember that when the dielectric
medium is inserted, the electric field remains unchanged, provided that the insulator
fills the whole space between the plates as shown in Figure 7.1c. The voltage V
remains the same and therefore so does the gradient V /d, which means that £ remains
constant.

7.1.2 DI1POLE MOMENT AND ELECTRONIC POLARIZATION

An electrical dipole moment is simply a separation between a negative and positive
charge of equal magnitude Q as shown in Figure 7.2. If a is the vector from the nega-
tive to the positive charge, the electric dipole moment is defined as a vector by

p=Qa [7.3]

The region that contains the +Q and —Q charges has zero net charge. Unless the
two charge centers coincide, this region will nonetheless, by virtue of the definition in
Equation 7.3, contain a dipole moment.

The net charge within a neutral atom is zero. Furthermore, on average, the center
of negative charge of the electrons coincides with the positive nuclear charge, which
means that the atom has no net dipole moment, as indicated in Figure 7.3a. However,
when this atom is placed in an external electric field, it will develop an induced dipole
moment. The electrons, being much lighter than the positive nucleus, become easily
displaced by the field, which results in the separation of the negative charge center

0 =0 Figure 7.2 The definition of electric
net dipole moment.
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from the positive charge center, as shown in Figure 7.3b. This separation of negative
and positive charges and the resulting induced dipole moment are termed polarization.
An atom is said to be polarized if it possesses an effective dipole moment, that is, if
there is a separation between the centers of negative and positive charge distributions.

The induced dipole moment depends on the electric field causing it. We define a
quantity called the polarizability « to relate the induced dipole moment pjygyced to the
field Z causing it,

Dinduced = @E [7.4]

where « is a coefficient called the polarizability of the atom. It depends on the polar-
ization mechanism. Since the polarization of a neutral atom involves the displacement
of electrons, « is called electronic polarization and denoted as «.. Inasmuch as the
electrons in an atom are not rigidly fixed, all atoms possess a certain amount of elec-
tronic polarizability.

In the absence of an electric field, the center of mass of the orbital motions of the
electrons coincides with the positively charged nucleus and the electronic dipole
moment is zero. Suppose that the atom has Z number of electrons orbiting the nucleus
and all the electrons are contained within a certain spherical region. When an electric
field £ is applied, the light electrons become displaced in the opposite direction to E,
so their center of mass C is shifted by some distance x with respect to the nucleus O,
which we take to be the origin, as shown in Figure 7.3b. As the electrons are “pushed”
away by the applied field, the Coulombic attraction between the electrons and nuclear
charge “pulls in” the electrons. The force on the electrons, due to E, trying to separate
them away from the nuclear charge is ZeE. The restoring force F,, which is the
Coulombic attractive force between the electrons and the nucleus, can be taken to be
proportional to the displacement x, provided that the latter is small.! The restoring
force F, is obviously zero when C coincides with O (x = 0). We can write

F, = —Bx

| ' It may be noticed that even if F; is a complicated function of x, it can sfill be expanded in a series in terms of
powers of x, that is, x, x2, x°, and so on, and for small x only the x term is significant, F, = —Bx.
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where B is a constant and the negative sign indicates that F, is always directed toward
the nucleus O (Figure 7.3b). In equilibrium, the net force on the negative charge is
Zero or

ZeE = Bx

from which x is known. Therefore the magnitude of the induced electronic dipole
moment p, is given by

Z2 2
Pe = (Ze)x = (—ﬂi)z [7.5]

As expected, p, is proportional to the applied field. The electronic dipole moment
in Equation 7.5 is valid under static conditions, that is, when the electric field is a dc
field. Suppose that we suddenly remove the applied electric field polarizing the atom.
There is then only the restoring force —Bx, which always acts to pull the electrons
toward the nucleus O. The equation of motion of the negative charge center is then

(from force = mass x acceleration)
d*x
—Bx=Zm,—
p ‘de?

Thus the displacement at any time is

x(t) = x, cos(w,t)

1/2
w, =( A ) [7.6]
Zm,

is the oscillation frequency of the center of mass of the electron cloud about the
nucleus and x, is the displacement before the removal of the field. After the removal
of the field, the electronic charge cloud executes simple harmonic motion about the
nucleus with a natural frequency determined by Equation 7.6; w, is called the elec-
tronic polarization resonance frequency.’ It is analogous to a mass on a spring being
pulled and let go. The system then executes simple harmonic motion. The oscillations
of course die out with time. In the atomic case, a sinusoidal displacement implies that
the electronic charge cloud has an acceleration

d*x
dt?

It is well known from classical electromagnetism that an accelerating charge radiates
electromagnetic energy just like a radio antenna. Consequently the oscillating charge

where

= —xowg cos(wyt)

2The term natural frequency refers to a system’s characteristic frequency of oscillation when it is excited. A mass
attached to a spring and then let go will execute simple harmonic motion with a certain natural frequency w,. If we
then decide to oscﬁote this mass with an applied force, the maximum energy transfer will occur when the applied
force has the same frequency as w,; the system will be put in resonance. w, is also a resonant frequency. Strictly,

o = 2xf is the angular frequency and f is the frequency. It is quite common to simply refer to w as a frequency
because the literature is dominated by w; the meaning should be obvious within context.
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cloud loses energy, and thus its amplitude of oscillation decreases. (Recall that the
average energy is proportional to the square of the amplitude of the displacement.)

From the expression derived for p, in Equation 7.5, we can find the electronic
polarizability «, from Equation 7.4,

Ze?

m w?

(7.7]

o, =

EXAMPLE 7.1

ELECTRONIC POLARIZABILITY Consider the electronic polarizability of inert gas atoms. These
atoms have closed shells. Their electronic polarizabilities are listed in Table 7.1. For each type
of atom calculate the electronic polarization resonant frequency f, = w,/27, and plot «, and f,
against the number of electrons Z in the atom. What is your conclusion?

SOLUTION
We can use Equation 7.7 to calculate the resonant frequency f, = w,/2n. Taking Ar,

o ( ze* )'/2 B [ (18)(1.6 x 1071%)?
7 Naem,)  L(1.7 x 10-%)(9.1 x 10-31)

1/2
] = 5.46 x 10" rad s™

Table 7.1  Electronic polarizability e dependence on Z for the inert element atoms
Atom
He Ne Ar Kr Xe Rn*
VA 2 10 18 36 56
e x 1074 (Fm?) 0.18 0.45 L7 2.7 4.4 59
fo x 10' (Hz) 8.90 12.6 8.69 9.76 9.36 102
I *Rn (radon) gas is radioactive.
30 - L P T A |
f [ ]
103"‘“.'“""'2 """" L St el ahd 3
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x10'> Hz ] Q"Xe |
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Figure 7.4 Electronic polarizability and its /. -
resonance frequency versus the number of electrons 0.1 T T
in the atom (Z). 1 10 100

The dashed line is the bestfit line.

Atomic number Z



7.1 MATTER POLARIZATION AND RELATIVE PERMITTIVITY

so that

f,=20 _ 369 x 10" Hz
2r

which is listed in Table 7.1, among other f, calculations for the other atoms. Such frequencies
correspond to the field oscillations in UV light, that is, at optical frequencies. For all practical
purposes, electronic polarization occurs very rapidly, that is, on a time scale 1/f, or 107155, and
we can take the static polarizability «, to remain the same up to optical frequencies.?

Figure 7.4 shows the dependence of @, and f, on the number of electrons Z. It is apparent
that o, is nearly linearly proportional to Z, whereas f, is very roughly constant. It is left as an ex-
ercise to show that 8 increases with Z, which is reasonable since the restoring force was defined
as the total force between all the electrons and the nucleus when the electrons are displaced.
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7.1.3 POLARIZATION VECTOR P

When a material is placed in an electric field, the atoms and the molecules of the
material become polarized, so we have a distribution of dipole moments in the mate-
rial. We can visualize this effect with the insertion of the dielectric slab into the par-
allel plate capacitor, as depicted in Figure 7.5a. The placement of the dielectric slab
into an electric field polarizes the molecules in the material. The induced dipole mo-
ments all point in the direction of the field. Consider the polarized medium alone, as
shown in Figure 7.5b. In the bulk of the material, the dipoles are aligned head to tail.
Every positive charge has a negative charge next to it and vice versa. There is there-
fore no net charge within the bulk. But the positive charges of the dipoles appearing
at the right-hand face are not canceled by negative charges of any dipoles at this face.
There is therefore a surface charge +Qp on the right-hand face that results from the
polarization of the medium. Similarly, there is a negative charge —Qp with the same
magnitude appearing on the left-hand face due to the negative charges of the dipoles
at this face. We see that charges +Qp and —Qp appear on the opposite surfaces of a
material when it becomes polarized in an electric field, as shown in Figure 7.5c. These
charges are bound and are a direct result of the polarization of the molecules. They
are termed surface polarization charges. Figure 7.5¢ emphasizes this aspect of di-
electric behavior in an electric field by showing the dielectric and its polarization
charges only.

We represent the polarization of a medium by a quantity called polarization P,
which is defined as the total dipole moment per unit volume,

= [p1+p2+ - +pnl [7.8a]

Volume
where py, p2, ..., pn are the dipole moments induced at N molecules in the volume.
If p,y is the average dipole moment per molecule, then an equivalent definition of P is
P = N pav [78')]

3 Electronic polarization at opfical frequencies controls the opfical properties such as the refractive index, as will be
covered in Chapter 9.

Definition of
polarization
vector
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polarization
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Bound polarization
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Figure 7.5

{a) When a dielectric is placed in an electric field, bound polarization charges appear on the
opposite surfaces.

{b) The origin of these polarization charges is the polarization of the molecules of the medium.

(c) We can represent the whole dielectric in terms of its surface polarization charges +Qp
and —Qp.

where N is the number of molecules per unit volume. There is an important relation-
ship, given below, between P and the polarization charges Qp on the surfaces of the
dielectric. It should be emphasized for future discussions that if polarization arises
from the effect of the applied field, as shown in Figure 7.5a, which is usually the case,
Pay must be the average dipole moment per atom in the direction of the applied field.
In that case we often also denote p,, as the induced average dipole moment per mole-
cule Pinduced-

To calculate the polarization P for the polarized dielectric in Figure 7.5b, we need
to sum all the dipoles in the medium and divide by the volume Ad, as in Equation
7.8a. However, the polarized medium can be simply represented as in Figure 7.5c in
terms of surface charge +Qp and —Qp, which are separated by the thickness dis-
tance d. We can view this arrangement as one big dipole moment poa from —Q5p to

+Qp. Thus
Diotal = Qpd

Since the polarization is defined as the total dipole moment per unit volume, the mag-
nitude of P is

" Volume  Ad A
But Qp/A is the surface polarization charge density op, so
P = op [7.9d]
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External field

Polarization

charges

on the surface of Figure 7.6 Polarization charge density on the surface of a
a polarized polarized medium is related to the normal component of the
medium polarization vector.

Polarization is a vector and Equation 7.9a only gives its magnitude. For the rec-
tangular slab in Figure 7.5c, the direction of P is normal to the surface. For +o)
(right face), it comes out from the surface and for —op (left face), it is directed into the
surface. Although Equation 7.9a is derived for one specific geometry, the rectangular
slab, it can be generalized as follows. The charge per unit area appearing on the sur-
face of a polarized medium is equal to the component of the polarization vector nor-
mal to this surface. If Pporma is the component of P normal to the surface where the
polarization charge density is op, as shown in Figure 7.6, then,

Puormal = O p [7.9b]

The polarization P induced in a dielectric medium when it is placed in an electric
field depends on the field itself. The induced dipole moment per molecule within the
medium depends on the electric field by virtue of Equation 7.4. To express the depen-
dence of P on the field £, we define a quantity called the electric susceptibility x. by

[7.10]

Equation 7.10 shows an effect P due to a cause E and the quantity x. relates the
effect to its cause. Put differently, x, acts as a proportionality constant. It may depend
on the field itself, in which case the effect is nonlinearly related to the cause. Further,
electronic polarizability is defined by

P = x.6,E

Dinduced = @
$0
P = NPinqucea = N E
where N is the number of molecules per unit volume. Then from Equation 7.10, x, and
a, are related by

1
Xe = —Na, [7.1]

&o
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It is important to recognize the difference between free and polarization (or bound)
charges. The charges stored on the metal plates in Figure 7.5a are free because they
result from the motion of free electrons in the metal. For example both Q, and Q, be-
fore and after the dielectric insertion in Figure 7.1, are free charges that arrive on the
plates from the battery. The polarization charges +Q p and —Q p, on the other hand, are
bound to the molecules. They cannot move within the dielectric or on its surface.

The field £ before the dielectric was inserted (Figure 7.1a) is given by

[7.12]

where o, = Q,/A is the free surface charge density without any dielectric medium |
between the plates, as in Figure 7.1a. i

After the insertion of the dielectric, this field remains the same V /d, but the free
charges on the plates are different. The free surface charge on the plates is now Q. In ad-
dition there are bound polarization charges on the dielectric surfaces next to the plates, |
as shown in Figure 7.5a. It is apparent that the flow of current during the insertion of the '
dielectric, Figure 7.1b, is due to the additional free charges Q — Q, needed on the ca-
pacitor plates to neutralize the opposite polarity polarization charges Qp appearing on
the dielectric surfaces. The total charge (see Figure 7.5a) due to that on the plate plus that
appearing on the dielectric surface, Q — Q p, must be the same as before, Q,, so that the
field, as given by Equation 7.12, does not change inside the dielectric, that is,

Q_QP=Q0
Q=Q0+QP

|
Dividing by A, defining o = Q/A as the free surface charge density on the plates {
with the dielectric inserted, and using Equation 7.12, we obtain |

or

o =¢cE+o0p

Since op = P and P = x.&,E, Equations 7.9 and 7.10, we can eliminate op to
obtain

o =¢g,(1+ )(e)Z

From the definition of the relative permittivity in Equation 7.2 we have

Q o
8’. _——_——-

Qo Oy
Relative o . . .
permittivity so substituting for o and using Equation 7.12 we obtain
and electric ) & =1+ x. [7.13]

tibili . . . -

susceproiiLy In terms of electronic polarization, from Equation 7.11, this is
Relative Na
permittivity g =1+ —= (7.14]
and - &
polarizability The significance of Equation 7.14 is that it relates the microscopic polarization

mechanism that determines o, to the macroscopic property &,.
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Electric field at
atomic scale

Figure 7.7 The electric field inside a polarized
dielectric at the atomic scale is not uniform.

The local field is the actual field that acts on a
molecule. It can be calculated by removing that
molecule and evaluating the field at that point from
the charges on the plates and the dipoles
surrounding the point.

7.1.4 LocAL FIELD E),c AND CLAUSIUS—-MOSSOTTI EQUATION

Equation 7.14, which relates ¢, to electronic polarizability «, is only approximate
because it assumes that the field acting on an individual atom or molecule is the field
E, which is assumed to be uniform within the dielectric. In other words, the induced
polarization, pisauced ¢ E. However, the induced polarization depends on the actual
field experienced by the molecule. It is apparent from Figure 7.5a that there are polar-
ized molecules within the dielectric with their negative and positive charges separated
so that the field is not constant on the atomic scale as we move through the dielectric.
This is depicted in Figure 7.7. The field experienced by an individual molecule is
actually different than £, which represents the average field in the dielectric. As soon
as the dielectric becomes polarized, the field at some arbitrary point depends not only
on the charges on the plates (Q) but also on the orientations of all the other dipoles
around this point in the dielectric. When averaged over some distance, say a few thou-
sand molecules, this field becomes E, as shown in Figure 7.7.

The actual field experienced by a molecule in a dielectric is defined as the local
field and denoted by Zy,. It depends not only on the free charges on the plates but also
on the arrangement of all the polarized molecules around this point. In evaluating o
we simply remove the molecule from this point and calculate the field at this point
coming from all sources, including neighboring polarized molecules, as visualized in
Figure 7.7. Ej,. will depend on the amount of polarization the material has experi-
enced. The greater the polarization, the greater is the local field because there are big-
ger dipoles around this point. £, depends on the arrangement of polarized molecules
around the point of interest and hence depends on the crystal structure. In the simplest
case of a material with a cubic crystal structure, or a liquid (no crystal structure), the
local field . acting on a molecule increases with polarization as*

1
Eioc =E+ —P [7.15]
3e,,

4 This field is called the Lorentz field and the proof, though not difficult, is not necessary for the present introductory
treatment of dielectrics. This local field expression does not apply to dipolar dielectrics discussed in Section 7.3.2.
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Equation 7.15 is called the Lorentz field. The induced polarization in the mole-
cule now depends on this local field £, rather than the average field £. Thus

Dinduced = ®@eEioc
The fundamental definition of electric susceptibility by the equation
P = x.6,E

is unchanged, which means that ¢, = 1 + x., Equation 7.13, remains intact. The
polarization is defined by P = Np;,quced> a0d Pinduced €an be related to Ey,. and hence to
£ and P. Then

P = (e, — 1)g,E

can be used to eliminate £ and P and obtain a relationship between ¢, and «,. This is
the Clausius—-Mossotti equation,

g —1 _Nae
&+2 3e,

[7.16]

This equation allows the calculation of the macroscopic property ¢, from micro-
scopic polarization phenomena, namely, «,.

EXAMPLE 7.2

ELECTRONIC POLARIZABILITY OF A VAN DER WAALS SOLID The electronic polarizability of
the Ar atom is 1.7 x 10~ F m?. What is the static dielectric constant of solid Ar (below 84 K)
if its density is 1.8 g cm™3?

SOLUTION

To calculate ¢, we need the number of Ar atoms per unit volume N from the density d. If
M, = 39.95 is the relative atomic mass of Ar and N, is Avogadro’s number, then

v = Nad _ (6.02 x 10% mol"))(1.8 gem™?)
My (39.95 gmol ™)
with N = 2.71 x 102 m~? and e, = 1.7 x 10~* F m?, we have

Na, 2.71 x 10%)(1. -40
a=1+( X (1.7 x 10 )____1‘52
£ (8.85 x 10~12)

=271 x 10%cm™3

e =1+

If we use the Clausius—Mossotti equation, we get

2Na,

3¢,
N,

3e,

1+
& =
1-

= 1.63

The two values are different by about 7 percent. The simple relationship in Equation 7.14
underestimates the relative permittivity.
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7.2 ELECTRONIC POLARIZATION:
COVALENT SOLIDS

When a field is applied to a solid substance, the constituent atoms or molecules
become polarized, as we visualized in Figure 7.5a. The electron clouds within each
atom become shifted by the field, and this gives rise to electronic polarization. This
type of electronic polarization within an atom, however, is quite small compared with
the polarization due to the valence electrons in the covalent bonds within the solid.
For example, in crystalline silicon, there are electrons shared with neighboring Si
atoms in covalent bonds, as shown in Figure 7.8a. These valence electrons form
bonds (i.e., become shared) between the Si atoms because they are already loosely
bound to their parent atoms. If this were not the case, the solid would be a van der
Waals solid with atoms held together by secondary bonds (e. g., solid Ar below 83.8 K).
In the covalent solid, the valence electrons therefore are not rigidly tied to the ionic
cores left in the Si atoms. Although intuitively we often view these valence electrons
as living in covalent bonds between the ionic Si cores, they nonetheless belong to the
whole crystal because they can tunnel from bond to bond and exchange places with
each other. We refer to their wavefunctions as delocalized, that is, not localized to any
particular Si atom. When an electric field is applied, the negative charge distribution
associated with these valence electrons becomes readily shifted with respect to the
positive charges of the ionic Si cores, as depicted in Figure 7.8b and the crystal ex-
hibits polarization, or develops a polarization vector. One can appreciate the greater
flexibility of electrons in covalent bonds compared with those in individual ionic
cores by comparing the energy involved in freeing each. It takes perhaps 1-2 eV to
break a covalent bond to free the valence electron, but it takes more than 10 eV to free
an electron from an individual ionic Si core. Thus, the valence electrons in the bonds
readily respond to an applied field and become displaced. This type of electronic po-
larization, due to the displacement of electrons in covalent bonds, is responsible for
the large dielectric constants of covalent crystals. For example ¢, = 11.9 for the Si
crystal and e, = 16 for the Ge crystal.

Si ionic core Figure 7.8

the valence electrons.

Negative charge cloud of valence
electrons
(a) (b)

(b) When an electric field is applied to a
covalent solid, the valence electrons in the
covalent bonds are shifted very easily with
respect to the positive ionic cores. The whole
solid becomes polarized due to the collective
shift in the negative charge distribution of
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(a) Valence electrons in covalent bonds in the
absence of an applied field.
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30111 &Y ELECTRONIC POLARIZABILITY OF COVALENT SOLIDS Consider a pure Si crystal that has
g =119,

a.

b.

What is the electronic polarizability due to valence electrons per Si atom (if one could por-
tion the observed crystal polarization to individual atoms)?

Suppose that a Si crystal sample is electroded on opposite faces and has a voltage applied
across it. By how much is the local field greater than the applied field?

What is the resonant frequency f, corresponding to w,?

From the density of the Si crystal, the number of Si atoms per unit volume, N, is given as
5x 108m™3,

SOLUTION

a.

Given the number of Si atoms, we can apply the Clausius—Mossotti equation to find a,

36,6, —1 3(8.85x107'%) 11.9 -1
Ne+2  (5x10%) 11942

=4.17 x 107 Fm?

o,

This is larger, for example, than the electronic polarizability of an isolated Ar atom, which
has more electrons. If we were to take the inner electrons in each Si atom as very roughly
representing Ne, we would expect their contribution to the overall electronic polarizability
to be roughly the same as the Ne atom, which is 0.45 x 10~% F m?,

The local field is

1
P
3¢,

£loc =E+
But, by definition,

P = x.6,E= (e, — 1), E

Substituting for P,
1
FEioc =E+ 5(6, -1E

so the local field with respect to the applied field is

Eioc
e (e, +2) = 4.63

W |

The local field is a factor of 4.63 greater than the applied field.

Since polarization is due to valence electrons and there are four per Si atom, we can use
Equation 7.7,

ze? \'? 4(1.6 x 10-19)2 ]“2
= = =1.65 x 10" rad 5™
@ (m,a,) [(9.1 X 10-31)(4.17 x 10-%) x 10 rads

The corresponding resonant frequency is w,/2n or 2.6 x 10" Hz, which is typically asso-
ciated with electromagnetic waves of wavelength in the ultraviolet region.
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7.3 POLARIZATION MECHANISMS

In addition to electronic polarization, we can identify a number of other polarization
mechanisms that may also contribute to the relative permittivity.

7.3.1 IONIC POLARIZATION

This type of polarization occurs in ionic crystals such as NaCl, KCl, and LiBr. The
ionic crystal has distinctly identifiable ions, for example, Na* and C1~, located at well-
defined lattice sites, so each pair of oppositely charged neighboring ions has a dipole
moment. As an example, we consider the one-dimensional NaCl crystal depicted as a
chain of alternating Na* and Cl~ ions in Figure 7.9a. In the absence of an applied field,
the solid has no net polarization because the dipole moments of equal magnitude are
lined up head to head and tail to tail so that the net dipole moment is zero. The dipole
moment p, in the positive x direction has the same magnitude as p_ in the negative x
direction, so the net dipole moment

Pnee=p+—p-=0

In the presence of a field £ along the x direction, however, the C1~ ions are pushed
in the —x direction and the Na* ions in the +x direction about their equilibrium
positions. Consequently, the dipole moment p, in the +x direction increases to p’,
and the dipole moment p_ decreases to p’, as shown in Figure 7.9b. The net di-
pole moment is now no longer zero. The net dipole moment, or the average dipole
moment, per ion pair is now (p/, — p’), which depends on the electric field .
Thus the induced average dipole moment per ion pair p,, depends on the field £.
The ionic polarizability «; is defined in terms of the local field experienced by the
ions,

Ionic
Pav = ®iEioc A7) olarizability
The larger the o;, the greater the induced dipole moment. Generally, «; is larger
than the electronic polarizability «, by a factor of 10 or more, which leads to ionic
solids having large dielectric constants. The polarization P exhibited by the ionic solid
Py p_ Figure 7.9
—>< >t (@) A NaCl chain in the NaCl crystal without an
a applied field. Average or net dipole moment per ion
(o D AWMWEW—W —x applied 9 P P
Cll Na* ! E X : | {b) In the presence of an applied field, the ions
! | : g w i . become slightly displaced, which leads to a net
! | : v ! ot ! average dipole moment per ion.
LRGN RN
— PP —

g e o)
E -
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is therefore given by
P = N;paw = NittiEjoc
where N, is the number of ion pairs per unit volume. By relating the local field to £ and
using
= (e, — D&, E
we can again obtain the Clausius—Mossotti equation, but now due to ionic polarization,
&g —1 1

= — N;q; 7.18
& +2  3s, i [7.18]

Each ion also has a core of electrons that become displaced in the presence of an
applied field with respect to their positive nuclei and therefore also contribute to the po-
larization of the solid. This electronic polarization simply adds to the ionic polarization.
Its magnitude is invariably much smaller than the ionic contribution in these solids.

7.3.2 ORIENTATIONAL (DIPOLAR) POLARIZATION

Certain molecules possess permanent dipole moments. For example, the HCl molecule
shown in Figure 7.10a has a permanent dipole moment p, from the Cl~ ion to the
H™ ion. In the liquid or gas phases, these molecules, in the absence of an electric field,
are randomly oriented as a result of thermal agitation, as shown in Figure 7.10b. When
an electric field £ is applied, Z tries to align the dipoles parallel to itself, as depicted
in Figure 7.10c. The C1~ and H* charges experience forces in opposite directions. But
the nearly rigid bond between C1~ and H* holds them together, which means that the

cr + e -
(a) A HCI molecule possesses a permanent dipole H » 4 / ¢
moment po. @_>@ pav=0 \ ‘ ~a /
(b) In the absence of a field, thermal agitation of the P,
molecules results in zero net average dipole moment per A% '’ \ T P/
molecule.
{c) A dipole such as HCI placed in a field experiences a
torque that tries to rotate it to align p, with the field . (a) (b)
(d) In the presence of an applied field, the dipoles try to
rotate to align with the field against thermal agitation.
There is now a net average dipole moment per molecule
along the field. +Q
—
T
/ e P
pP,= aQ ’] F= Q E /'\‘/ — \
—PpZ p,,*0 r—f-}
ra. 5 A\ < ~
-0

(c) (d)
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molecule experiences a torque T about its center of mass.> This torque acts to rotate the
molecule to align p, with E. If all the molecules were to simply rotate and align with
the field, the polarization of the solid would be

P = Np,

where N is the number of molecules per unit volume. However, due to their thermal
energy, the molecules move around randomly and collide with each other and with the
walls of the container. These collisions destroy the dipole alignments. Thus the thermal
energy tries to randomize the orientations of the dipole moments. A snapshot of the
dipoles in the material in the presence of a field can be pictured as in Figure 7.10d in
which the dipoles have different orientations. There is, nonetheless, a net average
dipole moment per molecule p,, that is finite and directed along the field. Thus the
material exhibits net polarization, which leads to a dielectric constant that is deter-
mined by this orientational polarization.

To find the induced average dipole moment p,, along £, we need to know the
average potential energy Eg;, of a dipole placed in a field £ and how this compares with
the average thermal energy %kT per molecule as in the present case of five degrees of
freedom. Eg;, represents the average external work done by the field in aligning the
dipoles with the field. If %kT is much greater than Eg,, then the average thermal
energy of collisions will prevent any dipole alignment with the field. If, however, Eg;p
is much greater than %kT, then the thermal energy is insufficient to destroy the dipole
alignments.

A dipole at an angle 6 to the field experiences a torque t that tries to rotate it, as
shown in Figure 7.10c. Work done dW by the field in rotating the dipole by d@ is t d6
(as in F dx). This work dW represents a small change dE in the potential energy of
the dipole. No work is done if the dipole is already aligned with £, when 6 = 0, which
corresponds to the minimum in PE. On the other hand, maximum work is done when
the torque has to rotate the dipole from 8 = 180° to & = 0° (either clockwise or coun-
terclockwise, it doesn’t matter). The torque experienced by the dipole, according to
Figure 7.10c, is given by

t = (Fsinf)a or Eposin b
where
po=aQ
If we take PE = 0 when 6 = 0, then the maximum PE is when 6 = 180°, or

12
E max =f PoEsin6d6 =2p,E
0

The average dipole potential energy is then %Emax or p,E. For orientational polar-
ization to be effective, this energy must be greater than the average thermal energy.
The average dipole moment p,, along £ is directly proportional to the magnitude of p,
itself and also proportional to the average dipole energy to average thermal energy

| 3 The oppositely directed forces also slightly stretch the Cl=—H* bond, but we neglect this effect.
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ratio, that is,

DoE
Pav X Do g—k_T

If we were to do the calculation properly using Boltzmann statistics for the distri-
bution of dipole energies among the molecules, that is, the probability that the dipole
has an energy E is proportional to exp(—E/kT), then we would find that when
PoE < kT (generally the case),

_lpgf
T3 kT

Pav [7.19]

It turns out that the intuitively derived expression for p,, is roughly the same as
Equation 7.19. Strictly, of course, we should use the local field acting on each mole-
cule, in which case Z is simply replaced by E,,.. From Equation 7.19 we can define a
dipolar orientational polarizability «, per molecule by

Qg = ——— [7.20]

It is apparent that, in contrast to the electronic and ionic polarization, dipolar
orientational polarization is strongly temperature dependent. oy decreases with tem-
perature, which means that the relative permittivity €, also decreases with temperature.
Dipolar orientational polarization is normally exhibited by polar liquids (e.g., water,
alcohol, acetone, and various electrolytes) and polar gases (e.g., gaseous HCI and
steam). It can also occur in solids if there are permanent dipoles within the solid struc-
ture, even if dipolar rotation involves a discrete jump of an ion from one site to another,
such as in various glasses.

7.3.3 INTERFACIAL POLARIZATION

Interfacial polarization occurs whenever there is an accumulation of charge at an
interface between two materials or between two regions within a material. The simplest
example is interfacial polarization due to the accumulation of charges in the dielectric
near one of the electrodes, as depicted in Figure 7.11a and b. Invariably materials, how-
ever perfect, contain crystal defects, impurities, and various mobile charge carriers such
as electrons (e.g., from donor-type impurities), holes, or ionized host or impurity ions.
In the particular example in Figure 7.11a, the material has an equal number of positive
ions and negative ions, but the positive ions are assumed to be far more mobile. For ex-
ample, if present, the H ion (which is a proton) and the Li* ion in ceramics and glasses
are more mobile than negative ions in the structure because they are relatively small.
Under the presence of an applied field, these positive ions migrate to the negative elec-
trode. The positive ions, however, cannot leave the dielectric and enter the crystal struc-
ture of the metal electrode. They therefore simply pile up at the interface and give rise
to a positive space charge near the electrode. These positive charges at the interface at-
tract more electrons to the negative electrode. This additional charge on the electrode,
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Figure 7.11

(a) A crystal with equal number of mobile positive ions and fixed negative ions. In the absence of a
field, there is no net separation between all the positive charges and all the negative charges.

(b) In the presence of an applied field, the mobile positive ions migrate toward the negative
electrode and accumulate there. There is now an overall separation between the negative charges
and positive charges in the dielectric. The dielectric therefore exhibits interfacial polarization.

{c) Grain boundaries and interfaces between different materials frequently give rise to interfacial
polarization.

of course, appears as an increase in the dielectric constant. The term interfacial polar-
ization arises because the positive charges accumulating at the interface and the re-
mainder of negative charges in the bulk together constitute dipole moments that appear
in the polarization vector P (P sums all the dipoles within the material per unit volume).

Another typical interfacial polarization mechanism is the trapping of electrons
or holes at defects at the crystal surface, at the interface between the crystal and the
electrode. In this case we can view the positive charges in Figure 7.11a as holes and
negative charges as immobile ionized acceptors. We assume that the contacts are
blocking and do not allow electrons or holes to be injected, that is, exchanged between
the electrodes and the dielectric. In the presence of a field, the holes drift to the nega-
tive electrode and become trapped in defects at the interface, as in Figure 7.11b.

Grain boundaries frequently lead to interfacial polarization as they can trap charges
migrating under the influence of an applied field, as indicated in Figure 7.11c. Dipoles
between the trapped charges increase the polarization vector. Interfaces also arise in
heterogeneous dielectric materials, for example, when there is a dispersed phase
within a continuous phase. The principle is then the same as schematically illustrated in
Figure 7.11c.

7.34 TOTAL POLARIZATION

In the presence of electronic, ionic, and dipolar polarization mechanisms, the average
induced dipole moment per molecule will be the sum of all the contributions in terms
of the local field,

Pav = QeEjoc + @iEloc + 0gEioc
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Table 7.2 Typical examples of polarization mechanisms

Example Polarization Static ¢, Comment

Ar gas Electronic 1.0005 Small N in gases: &, ~ |

Ar liquid (T < 87.3 K) Electronic 1.53 van der Waals bonding

Si crystal Electronic polarization 11.9 Covalent solid; bond

due to valence electrons polarization

NaCl crystal Ionic 5.90 Ionic crystalline solid

CsCl crystal Ionic 7.20 Ionic crystalline solid

Water Orientational 80 Dipolar liquid

Nitromethane (27 °C) Orientational 34 Dipolar liquid

PVC (polyvinyl Orientational 7 Dipole orientations partly
chloride) hindered in the solid

Each effect adds linearly to the net dipole moment per molecule, a fact verified by
experiments. Interfacial polarization cannot be simply added to the above equation as
a;Eioc because it occurs at interfaces and cannot be put into an average polarization per
molecule in the bulk. Further, the fields are not well defined at the interfaces. In addition,
we cannot use the simple Lorentz local field approximation for dipolar materials. That is,
the Clausius—Mossotti equation does not work with dipolar dielectrics and the calcula-
tion of the local field is quite complicated. The dielectric constant &, under electronic and
ionic polarizations, however, can be obtained from

g —1 1
= —(N N,' i 7.21
e +2 38,,( @ + Niai) 7.2

Table 7.2 summarizes the various polarization mechanisms and the corresponding
static (or very low frequency) dielectric constant. Typical examples where one mecha-
nism dominates over others are also listed.

EXAMPLE 7.4

IONIC AND ELECTRONIC POLARIZABILITY Consider the CsCl crystal which has one Cs*-Cl~
pair per unit cell and a lattice parameter a of 0.412 nm. The electronic polarizability of Cs* and
Cl~ ions is 3.35 x 10~* Fm? and 3.40 x 10~% F m?, respectively, and the mean ionic polariz-
ability per ion pair is 6 x 10~* F m?2 What is the dielectric constant at low frequencies and that
at optical frequencies?

SOLUTION

The CsCl structure has one cation (Cs*) and one anion (C17) in the unit cell. Given the lattice pa-
rameter a = 0.412 x 10~° m, the number of ion pairs N; per unit volume is 1/a> = 1/(0.412x
10~°m)? = 1.43 x 102 m~2. N is also the concentration of cations and anions individually.
From the Clausius—Mossotti equation,

g —1 1
a = —[Nic, + N;a (Cl™ Nia;
) 390[ @, (Cs™) 4+ N;a. (CI7) + N;a;]
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That is,

g —1 (143 x 10%® m~*)(3.35 x 10~% + 3.40 x 107* + 6 x 10~ Fm?)
&+2 3(8.85 x 10-2Fm™")
Solving for ¢,, we find &, = 7.56.
At high frequencies—that is, near-optical frequencies—the ionic polarization is too slug-

gish to allow ionic polarization to contribute to ¢,. Thus, &,4p, relative permittivity at optical fre-
quencies, is given by

Erop — 1 1

&rop+2  3e

[Nia.(Cs™) + N;a.(C17)]

That is,
Erop — 1 _ (143 x 10%® m™3)(3.35 x 107* +3.40 x 10~ Fm?)
Erop +2 3(8.85 x 10-2Fm-1)

Solving for &, we find ¢,o, = 2.71. Note that experimental values are &, = 7.20 at low fre-
quencies and &,,, = 2.62 at high frequencies, very close to calculated values.

74 FREQUENCY DEPENDENCE: DIELECTRIC
CONSTANT AND DIELECTRIC LOSS

7.4.1 DIELECTRIC LOSS

The static dielectric constant is an effect of polarization under dc conditions. When
the applied field, or the voltage across a parallel plate capacitor, is a sinusoidal sig-
nal, then the polarization of the medium under these ac conditions leads to an ac di-
electric constant that is generally different than the static case. As an example we will
consider orientational polarization involving dipolar molecules. The sinusoidally
varying field changes magnitude and direction continuously, and it tries to line up the
dipoles one way and then the other way and so on. If the instantaneous induced dipole
moment p per molecule can instantaneously follow the field variations, then at any
instant

and the polarizability oy has its expected maximum value from dc conditions, that is,
2
b,

o4 = 7.23

4= 30T (7.23]

There are two factors opposing the immediate alignment of the dipoles with the
field. First is that thermal agitation tries to randomize the dipole orientations. Colli-
sions in the gas phase, random jolting from lattice vibrations in the liquid and solid
phases, for example, aid the randomization of the dipole orientations. Second, the mol-
ecules rotate in a viscous medium by virtue of their interactions with neighbors, which
is particularly strong in the liquid and solid states and means that the dipoles cannot
respond instantaneously to the changes in the applied field. If the field changes too
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Figure 7.12 The applied dc field is suddenly
changed from £, to E at time t=0.
The induced dipole moment p has to decrease
from a4(0)E, to a final value of a4(0)E. The E [ ,
decrease is achieved by random collisions of : P
molecules in the gas. 0

rapidly, then the dipoles cannot follow the field and, as a consequence, remain ran-
domly oriented. At high frequencies, therefore, oy will be zero as the field cannot
induce a dipole moment. At low frequencies, of course, the dipoles can respond rapidly
to follow the field and oy has its maximum value. It is clear that oy changes from its
maximum value in Equation 7.23 to zero as the frequency of the field is increased. We
need to find the behavior of o4 as a function of frequency w so that we can determine
the dielectric constant ¢, by the Clausius—Mossotti equation.

Suppose that after a prolonged application, corresponding to dc conditions, the
applied field across the dipolar gaseous medium is suddenly decreased from £, to E
at a time we define as zZero, as shown in Figure 7.12. The field £ is smaller than Z,,
so the induced dc dipole moment per molecule should be smaller and given by o4(0)E
where a4(0) is oy at w = 0, dc conditions. Therefore, the induced dipole moment per
molecule has to decrease, or relax, from a4 (0)E, to a4(0)E. In a gas medium the mol-
ecules would be moving around randomly and their collisions with each other and the
walls of the container randomize the induced dipole per molecule. Thus the decrease,
or the relaxation process, in the induced dipole moment is achieved by random col-
lisions. Assuming that 7 is the average time, called the relaxation time, between mol-
ecular collisions, then this is the mean time it takes per molecule to randomize the
induced dipole moment. If p is the instantaneous induced dipole moment, then
p — a4(0)E is the excess dipole moment, which must eventually disappear to zero
through random collisions as # — oco. It would take an average r seconds to eliminate
the excess dipole moment p — «4(0)E. The rate at which the induced dipole moment
is changing is then —[p — a4(0)E]/t, where the negative sign represents a decrease.
Thus,

ar _ _p- O [7.24]
dt T

Although we did not derive Equation 7.24 rigorously, it is nonetheless a good

first-order description of the behavior of the induced dipole moment per molecule in

,i
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a dipolar medium. Equation 7.24 can be used to obtain the dipolar polarizability
under ac conditions. For an ac field, we would write

E = E, sin(wt)

and solve Equation 7.24, but in engineering we prefer to use an exponential represen-
tation for the field

E = E,exp(jot)

as in ac voltages. In this case the impedance of a capacitor C and an inductor L become
1/jwC and jwL, where j represents a phase shift of 90°. With £ = £, exp(jwt?) in
Equation 7.24, we have

dp p , 2(0)

=—-——+4
dt T T

E,exp(jowt) [7.25]

Solving this we find the induced dipole moment as
p = a4(0)E, exp(jwt)
where o4 (w) is given by

4(0)

og(w) = T+ jor [7.26]
and represents the orientational polarizability under ac field conditions. Polarizabil-
ity a4(w) is a complex number that indicates that p and E are out of phase.® Put
differently, if N is the number of molecules per unit volume, P = Np and E are out of
phase, as indicated in Figure 7.13a. At low frequencies, ot < 1, a4(w) is nearly
a4(0), and p is in phase with E. The rate of relaxation 1/7 is much faster than the fre-
quency of the field or the rate at which the polarization is being changed; p then closely
follows E. At very high frequencies, wt >> 1, the rate of relaxation 1/t is much slower
than the frequency of the field and p can no longer follow the variations in the field.
‘We can easily obtain the dielectric constant &, from a4(w) by using Equation 7.14,
which then leads to a complex number for ¢, since ¢ itself is a complex number. By

convention, we generally write the complex dielectric constant as

& =e¢, — je [7.27]

where ¢, is the real part and ¢, is the imaginary part, both being frequency dependent,
as shown in Figure 7.13b. The real part ¢, decreases from its maximum value ¢/.(0), cor-
responding to «4(0), to 1 at high frequencies when a; = 0 as w — oo in Equation 7.26.
The imaginary part €,/ (w) is zero at low and high frequencies but peaks when wr = 1
or when w = 1/7. The real part ¢, represents the relative permittivity that we would use
in calculating the capacitance, as for example in C = ¢,6,4/d. The imaginary part
e/(w) represents the energy lost in the dielectric medium as the dipoles are oriented
against random collisions one way and then the other way and so on by the field. Consider

| ¢ The polarization P lags behind £ by some angle ¢, that is determined by Equation 7.26 as shown in Figure 7.13.
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P = P, sin(wt- ¢)
E —— gandeg;

E=E sin wt £,

—_—
£(0)

v=V_sin wf

(a) 4 (b)

Figure 7.13

{a) An ac field is applied to a dipolar medium. The polarization P (P = Np) is out of phase with
the ac field.

{b) The relative permittivity is a complex number with real (¢7) and imaginary (¢7) parts that exhibit
relaxation at w ~ 1/7.

P = P, sin(wt- ¢)

Conductance = Gp = llRp

— 8
—
—t

© o

the admittance Y, i.e., the reciprocal of impedance of this capacitor, with &, given in

the capacitor in Figure 7.14, which has this dielectric medium between the plates. Then i
Equation 7.27 is '

y = JjwAgt, ()  johee ()  wAgE (w)
B d B d d

which can be written as

Y = jwC + Gp [7.28]
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where
C= AST"SL [7.29]
and
Gp = g%f—;/- [7.30]

is a real number just as if we had a conductive medium with some conductance Gp or
resistance 1/ Gp. The admittance of the dielectric medium according to Equation 7.28
is a parallel combination of an ideal, or lossless, capacitor C, with a relative permittiv-
ity ,, and a resistance of Rp = 1/Gp as indicated in Figure 7.14. Thus the dielectric
medium behaves as if C, and Rp were in parallel. There is no real electric power dissi-
pated in C, but there is indeed real power dissipated in Rp because

2
Input power = IV = YV2 = joCV? + %

P
and the second term is real. Thus the power dissipated in the dielectric medium is
related to &, and peaks when w = 1/t. The rate of energy storage by the field is de-
termined by « whereas the rate of energy transfer to molecular collisions is
determined by 1/t. When w = 1/7, the two processes, energy storage by the field
and energy transfer to random collisions, are then occurring at the same rate, and
hence energy is being transferred to heat most efficiently. The peak in ¢, versus w
is called a relaxation peak, which is at a frequency when the dipole relaxations are
at the right rate for maximum power dissipation. This process is known as dielectric
resonance.

According to Equation 7.28, the magnitude of Gp and hence the energy loss is
determined by ¢;’. In engineering applications of dielectrics in capacitors, we would
like to minimize ¢, for a given ¢;. We define the relative magnitude of ¢, with respect
to &, through a quantity, tan 8, called the loss tangent (or loss factor), as

tané = & [7.31]

/
r

which is frequency dependent and peaks just beyond @ = 1/7. The actual value of 1/7
depends on the material, but typically for liquid and solid media it is in the gigahertz
range, that is, microwave frequencies. We can easily find the energy per unit time—
power—dissipated as dielectric loss in the medium. The resistance Rp represents the
dielectric loss, so

Power loss V? 1 V2 1 V2 "
Wl = ———=— X — = ———— X — = — WE,E,
Volume Rp dA d dA  d?
wAeg,€!

Using Equation 7.31 and £ = V /d, we obtain
Wyol = @E?e,€) tan § [7.32]
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Figure 7.15 The frequency dependence of the real and imaginary parts of the dielectric constant
in the presence of interfacial, orientational, ionic, and electronic polarization mechanisms.

Equation 7.32 represents the power dissipated per unit volume in the polarization
mechanism: energy lost per unit time to random molecular collisions as heat. It is clear
that dielectric loss is influenced by three factors: w, £, and tan 8.

Although we considered only orientational polarization, in general a dielectric
medium will also exhibit other polarization mechanisms and certainly electronic
polarization since there will always be electron clouds around individual atoms, or
electrons in covalent bonds. If we were to consider the ionic polarizability in ionic
solids, we would also find &, to be frequency dependent and a complex number. In this
case, lattice vibrations in the crystal, typically at frequencies w; in the infrared region
of the electromagnetic spectrum, will dissipate the energy stored in the induced dipole
moments just as energy was dissipated by molecular collisions in the gaseous dipolar
medium. Thus, the energy loss will be greatest when the frequency of the polarizing
field is the same as the lattice vibration frequency, @ = w,, which tries to randomize
the polarization.

We can represent the general features of the frequency dependence of the real and
imaginary parts of the dielectric constant as in Figure 7.15. Although the figure shows
distinctive peaks in ¢, and transition features in ¢/, in reality these peaks and various
features are broader. First, there is no single well-defined lattice vibration frequency
but instead an allowed range of frequencies just as in solids where there is an allowed
range of energies for the electron. Moreover, the polarization effects depend on the
crystal orientation. In the case of polycrystalline materials, various peaks in different -
directions overlap to exhibit a broadened overall peak. At low frequencies the interfa-
cial or space charge polarization features are even broader because there can be a num-
ber of conduction mechanisms (different species of charge carriers and different
carrier mobilities) for the charges to accumulate at interfaces, each having its own |
speed. Orientational polarization, especially in many liquid dielectrics at room tem-
perature, typically takes place at radio to microwave frequencies. In some polymeric |
materials, this type of polarization involves a limited rotation of dipolar side groups !
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Figure 7.16 Real and imaginary parts of the dielectric constant, &/ and ¢/, versus frequency for (a) a
polymer, PET, at 115 °C and (b} an ionic crystal, KCl, at room temperature.

Both exhibit relaxation peaks but for different reasons.

SOURCE: Data for (a) from author’s own experiments using a dielectric analyzer (DEA), (b) from C. Smart, G. R. Wilkinson,
A. M. Karo, and J. R. Hardy, International Conference on Lattice Dynamics, Copenhagen, 1963, as quoted by D. H. Martin,
“The Study of the Vibration of Crystal Lattices by Far Infra-Red Speciroscopy,” Advances in Physics, 14, no. 53-56, 1965,
pp. 39-100.

attached to the polymeric chain and can occur at much lower frequencies depending on
the temperature. Figure 7.16 shows two typical examples of dielectric behavior, ¢, and
e/ as a function of frequency, for a polymer (PET) and an ionic crystal (KCl). Both ex-
hibit loss peaks, peaks in &, versus frequency, but for different reasons. The particular
polymer, PET (a polyester), exhibits orientational polarization due to dipolar side
groups, whereas KCl exhibits ionic polarization due to the displacement of Kt and C1~
ions. The frequency of the loss peak in the case of orientational polarization is highly
temperature dependent. For the PET example in Figure 7.16 at 115 °C, the peak occurs
at around 400 Hz, even below typical radio frequencies.

DIELECTRIC LOSS PER UNIT CAPACITANCE AND THE LOSS ANGLE § Obtain the dielectric loss RGN
per unit capacitance in a capacitor in terms of the loss tangent. Obtain the phase difference
between the current through the capacitor and that through Rp. What is the significance of §?

SOLUTION

We consider the equivalent circuit in Figure 7.14. The power loss in the capacitor is due to Rp.
If V is the rms value of the voltage across the capacitor, then the power dissipated per unit
capacitance Wy is

v: o1 we.e” A d we”
Wcap—"_x-': 2 °%r - _V2 Ir
Rp C d g,6L A A

or

Wep = V0 tan 8
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CHAPTER 7 « DIELECTRIC MATERIALS AND INSULATION

Table 7.3 Dieleciric properties of three insulators

[f=60Hz f=1MHz
Material &) tan § wtan§ 4 tan § wtan$
Polycarbonate 3.17 9 x 1074 0.34 2.96 [x1072 6.2 x10*
Silicone rubber 3.7 2.25 x 1072 8.48 3.4 4x1073  25x10*
Epoxy with mineral 5 4.7 x 1072 17.7 34 3x 1072 18 x 10

filler

As tan § is frequency dependent and peaks at some frequency, so does the power dissipated
per unit capacitance. A clear design objective would be to keep W, as small as possible. Fur-
ther, for a given voltage, W.,, does not depend on the dielectric geometry. For a given voltage
and capacitance, we therefore cannot reduce the power dissipation by simply changing the
dimensions of the dielectric.

Consider the rms currents through Rp and C, Jjoss and Icap Tespectively, and their ratio,’

1
Tioss Vv i we,E! A d
_bs_=—x‘lwc= o T ox - = —jtané
Ieap Rp \%4 d Jweo€l A

As expected, the two are 90° out of phase (—j) and the loss current (through Rp) is a factor,
tan &, of the capacitive current (through C). The ratio of I.;, and the total current, /. =
Icap + Iloss’ iS

I cap I cap 1 1

Itotal B Icap + Iloss h 1_105_5 B 1- jtan8

1+
[cap
The phase angle between I, and [iyq is determined by the negative of the phase of the
denominator term (1 — j tan 8). Thus the phase angle between Icop and I is 8, where /o, leads
Iiora1 by 8. 6 is also called the loss angle. When the loss angle is zero, I..p and I are equal and
there is no loss in the dielectric.

EXAMPLE 7.6

DIELECTRIC LOSS PER UNIT CAPACITANCE Consider the three dielectric materials listed in
Table 7.3 with their dielectric constant ¢/ (usually simply stated as ¢, ) and loss factors tan 8. At
a given voltage, which dielectric will have the lowest power dissipation per unit capacitance at
60 Hz? Is this also true at 1 MHz?

SOLUTION

The power dissipated at a given voltage per unit capacitance depends only on w tan 8, so we do
not need to use ¢, . Calculating w tan § or (27 f) tan é, we find the values listed in the table at
60 Hz and 1 MHz. At 60 Hz, polycarbonate has the lowest power dissipation per unit capaci-
tance, but at 1 MHz it is silicone rubber.

| 7 These currents are phasors, each with a rms magnitude and phase angle.
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Table 7.4  Dielectric loss per unit volume for two insulators (k is the thermal conductivity}

f=60Hz f=1MHz
Loss Loss K
Material &) tan 8 (mW cm™3) &l tan § (W em™3) Wem 'K
XLPE 23 3x107* 0.230 23 4x10™ 5.12 0.005
Alumina 85 1x1073 2.84 85 1x1073 47.3 0.33

DIELECTRIC LOSS AND FREQUENCY Calculate the heat generated per second due to dielectric [[3CUI N
loss per cm® of cross-linked polyethylene, XLPE (typical power cable insulator), and alumina,

Al O3 (typical substrate in thin- and thick-film electronics), at 60 Hz and 1 MHz at a field of
100 kV cm™!. Their properties are given in Table 7.4. What is your conclusion?

SOLUTION
The power dissipated per unit volume is
Wy = (27tf)£2608: tan §

We can calculate W, by substituting the properties of individual dielectrics at the given
frequency f. For example, for XLPE at 60 Hz,

Wy = (27760 Hz)(100 x 10% x 102 Vm~1)?(8.85 x 1072 Fm~1)(2.3)(3 x 107%)

=230 Wm™’
We can convert this into per cm® by
Wyol _
= 1—02— = 0.230 mW cm™>

which is shown in Table 7.4.

From similar calculations we can obtain the heat generated per second per cm? as shown in
Table 7.4. The heats at 60 Hz are small. The thermal conductivity of the insulation and its con-
necting electrodes can remove the heat without substantially increasing the temperature of the in-
sulation. At 1 MHz, the heats generated are not trivial. One has to remove 5.12 W of heat from
1 cm? of XLPE and 47.3 W from 1 cm? of alumina. The thermal conductivity « of XLPE is about
0.005 W cm~! K~!, whereas that of alumina is almost 100 times larger, 0.33 W cm™! K~!. The
poor thermal conductivity of polyethylene means that 5.12 W of heat cannot be conducted away
easily and it will raise the temperature of the insulation until dielectric breakdown ensues. In the
case of alumina, 47.3 W of heat will substantially increase the temperature. Dielectric loss is the
mechanism by which microwave ovens heat food. Dielectric heating at high frequencies is used
in industrial applications such as heating plastics and drying wood.

742 DEBYE EQUATIONS, COLE-COLE PLOTS,
AND EQUIVALENT SERIES CIRCUIT

Consider a dipolar dielectric in which there are both orientational and electronic
polarizations, ¢4 and «,, respectively, contributing to the overall polarizability. Electronic
polarization «, will be independent of frequency over the typical frequency range of
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