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8

Magnetic Properties
and Superconductivity

Many electrical engineering devices such as inductors, transformers, rotating ma-
chines, and ferrite antennas are based on utilizing the magnetic properties of materi-
als. There are many instances where permanent magnets are also used either on their
own or as part of a device such as a rotating machine or a loud speaker. The majority
of engineering devices make use of the ferromagnetic and ferrimagnetic properties,
which are therefore treated in much more detail than other magnetic properties such
as diamagnetism and paramagnetism. Although superconductivity involves the van-
ishing of the resistivity of a conductor at low temperatures and is normally explained
within quantum mechanics, we treat the subject in this chapter because all supercon-
ductors are perfect diamagnets and, further, they have present or potential uses that
involve magnetic fields. The advent of high-T, superconductivity, discovered in 1986
by George Bednorz and Alex Miiller at IBM Research Laboratories in Ziirich, is un-
doubtedly one of the most significant discoveries over the last S0 years, as popular-
ized in various magazines. High-T, superconductors are already finding applications
in such devices as superconducting solenoids, sensitive magnetometers, and high-Q
microwave filters.

8.1 MAGNETIZATION OF MATTER
8.1.1 MAGNETIC DIPOLE MOMENT

Magnetic properties of materials involve concepts based on the magnetic dipole mo-
ment. Consider a current loop, as shown in Figure 8.1, where the circulating current is /.
This may, for example, be a coil carrying a current. For simplicity we will assume that
- the current loop lies within a single plane. The area enclosed by the current is A. Sup-
pose that u,, is a unit vector coming out from the area A. The direction of u,, is such that
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Figure 8.3 A magnetic dipole moment creates a magnetic field just like a bar
magnet.

The field B depends on .

looking along it, the current circulates clockwise. Then the magnetic dipole moment,
or simply the magnetic moment p.,,, is defined by!

n, = IAu, 8.1]

When a magnetic moment is placed in a magnetic field, it experiences a torque
that tries to rotate the magnetic moment to align its axis with the magnetic field, as de-
picted in Figure 8.2. Moreover, since a magnetic moment is a current loop, it gives rise
to a magnetic field B around it, as shown in Figure 8.3, which is similar to the mag-
netic field around a bar magnet. We can find the field B from the current 7 and its
geometry, which are treated in various physics textbooks. For example, the field B ata
point P at a distance r along the axis of the coil from the center, as shown in Figure 8.3,
is directly proportional to the magnitude of the magnetic moment but inversely pro-
portional to 7>, thatis, B oc ., /r°.

! The symbol . for the magnetic dipole moment should not be confused with the permeability. Absolute and relative
permeabilities will be denoted by u, and .
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8.1.2 AtoMIC MAGNETIC MOMENTS

An orbiting electron in an atom behaves much like a current loop and has a magnetic
dipole moment associated with it, called the orbital magnetic moment (io), as il-
lustrated in Figure 8.4. If w is the angular frequency of the electron, then the current /
due to the orbiting electron is

e ew

1 =Ch flowi it time = — = -
arge flowing per unit time Deriod e

If r is the radius of the orbit, then the magnetic dipole moment is

ewr?

2

Bow = I (r?) = —

But the velocity v of the electron is wr and its orbital angular momentum is
L = (m.v)r = moor?
Using this in pon, We get

e

MHorb = — L [8.2]

2m,

We see that the magnetic moment is proportional to the orbital angular momentum
through a factor that has the charge to mass ratio of the electron. The numerical factor,
in this case e/2m,, relating the angular momentum to the magnetic moment, is called
the gyromagnetic ratio. The negative sign in Equation 8.2 indicates that p is in the
opposite direction to L and is due to the negative charge of the electron.

The electron also has an intrinsic angular momentum S, that is, spin. The spin of
the electron has a spin magnetic moment, denoted by (i, but the relationship be-
tween ugpin and S is not the same as that in Equation 8.2. The gyromagnetic ratio is a
factor of 2 greater,

e
Mspin = -—S [8.3]
me

The overall magnetic moment of the electron consists of p, and pg,, appropri-
ately added. We cannot simply add them numerically as they are vector quantities.
Furthermore, the overall magnetic moment p,,,, of the atom itself depends on the

Mo, Figure 8.4 An orbiting electron is
equivalent to a magnetic dipole moment
Horb-
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Figure 8.5 The spin magnetic moment precesses about an
external magnetic field along z and has a value u, along z.

orbital motions and spins of all the electrons. Electrons in closed subshells, however,
do not contribute to the overall magnetic moment because for every electron with a
given L (or S), there is another one with an opposite L (or S). The reason is that
the direction of L is space quantized by m, and all negative and positive values of m,
are occupied in a closed shell. Similarly, there are as many electrons spinning up
as there are spinning down, so there is no net electron spin in a closed shell and no
net p,,. Thus, only unfilled subshells contribute to the overall magnetic moment
of an atom.

Consider an atom that has closed inner shells and a single electron in an s orbital
(£ = 0). This means that the orbital magnetic moment is zero and the atom has a mag-
netic moment due to the spin of the electron alone, P = Mgpyin- In the presence of
an external magnetic field along the z direction, the magnetic moment cannot simply
rotate and align with the field because quantum mechanics requires the spin angular
momentum to be space quantized, that is, S; (the component of S along z) must be
msh where m; = i% is the spin magnetic quantum number. The torque experienced
by the spinning electron causes the spin magnetic moment to precess about the exter-
nal magnetic field, as shown in Figure 8.5. This precession is such that S, = — %h and
leads to an average magnetic moment ., along the field given by Equation 8.3 with S,
that is,

e e eh
o= 8, = = (mgh) = —— = B (8.4
m, m, 2m,
The quantity B = ef/2m, is called the Bohr magneton and has the value 9.27 x
107#Am?or J T~
Thus, the spin of a single electron has a magnetic moment of one Bohr magneton
along the field.

8.1.3 MAGNETIZATION VECTOR M
Consider a tightly wound long solenoid, ideally infinitely long, with free space (or vac-

uum) as the medium inside the solenoid, as shown in Figure 8.6a. The magnetic field
inside the solenoid is denoted by B, to specifically identify this field as in free space.
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t A

Figure 8.6
(a) Consider a long solenoid. With free space as the medium inside, the magnetic field is B,.
{b) A material medium inserted into the solenoid develops a magnetization M.

(a) (b)

This field depends on the current I through the solenoid wire and the number of turns
per unit length # and is given by?

B, = ponl = u,l’ [8.5]

where I’ is the current per unit length of the solenoid, thatis, I’ = nI, and u, is the ab-
solute permeability of free space in henries per meter, H m~!.

If we now place a cylindrical material medium to fill the inside of this solenoid, as
in Figure 8.6b, we find that the magnetic field has changed. The new magnetic field in
the presence of a medium is denoted as B. We will take B,, to be the applied magnetic
field into which the material medium is placed.

Each atom of the material responds to the applied field B, and develops, or ac-
quires, a net magnetic moment p,, along the applied field. We can view each magnetic
moment ., as the result of the precession of each atomic magnetic moment about B,,.
The medium therefore develops a net magnetic moment along the field and becomes
magnetized. The magnetic vector M describes the extent of magnetization of the
medium. M is defined as the magnetic dipole moment per unit volume. Suppose that
there are N atoms in a small volume AV and each atom i has a magnetic moment w,,;
(where i = 1 to N). Then M is defined by

l N
M= ﬁ ; Mmi = Natbhgy (8.6]

where n,, is the number of atoms per unit volume and p,, is the average magnetic mo-
ment per atom. We can assume that each atom acquires a magnetic moment ., along
B,,. Each of these magnetic moments along B, can be viewed as an elementary current
loop at the atomic scale, as schematically depicted in Figure 8.6b. These elementary

| 2 The proof of this comes out from Ampere’s law and can be found in any textbook of electromagnetism.

Free space
field inside
solenoid

Magnetiza-
tion vector
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Surface currents

Figure 8.7 Elementary current loops result in surface
currents,

There is no internal current, as adjacent currents on
neighboring loops are in opposite directions. Surface currents

current loops are due to electronic currents within the atom and arise from both orbital
and spin motions of the electrons. Each current loop has its current plane normal to B,,.

Consider a cross section of the magnetized medium, as in Figure 8.7. All the
elementary current loops in this plane have the current circulation in the same direction
inasmuch as each atom acquires the same magnetic moment . All neighboring loops in
the bulk have adjacent currents in opposite directions that cancel each other, as appar-
ent in Figure 8.7. Thus, there are no net bulk currents, or internal currents, within the bulk
of the material. However, the currents at the surface in the surface loops cannot be can-
celed and this leads to a net surface current, as depicted in Figure 8.7. The surface cur-
rents are induced by the magnetization of the medium by the applied magnetic field and
therefore depend on the magnetization M of the specimen.

From the definition of M, the total magnetic moment of the cylindrical specimen
is

Total magnetic moment = M (Volume) = MA¢{

Suppose that the magnetization current on the surface per unit length of the
specimen is I,,. Then the total circulating surface current is I,,£ and the total magnetic
moment of the specimen, by definition, is

Total magnetic moment = (Total current) x (Cross-sectional area) = I,,£A
Equating the two total magnetic moments, we find
M=1, (8.7]

We derived this for a particular sample geometry, a cylindrical specimen, in which
M is along the axis of the cylindrical specimen and I,, flows in a plane perpendicular
to M. The relationship, however, is more general, as derived in more advanced texts.
It should be emphasized that the magnetization current I,, is not due to the flow of free
charge carriers, as in a current-carrying copper wire, but due to localized electronic
currents within the atoms of the solid at the surface. Equation 8.7 states that we can
represent the magnetization of a medium by a surface current per unit length I,, that is
equal to M.
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8.1.4 MAGNETIZING FIELD OR MAGNETIC FIELD INTENSITY H

The magnetized specimen in Figure 8.6b placed inside the solenoid develops magneti-
zation currents on the surface. It therefore behaves like a solenoid. We can now regard
the solenoid with medium inside, as depicted in Figure 8.8. The magnetic field within
the medium now arises from not only the conduction current per unit length /' in the
solenoid wires but also from the magnetization current /,, on the surface. The magnetic
field B inside the solenoid is now given by the usual solenoid expression but with a
current that includes both 7’ and 1,,, as shown in Figure 8.8:

B = I‘Lo(ll"' In) = Bo + woM
This relationship is generally valid and can be written in vector form as
B=B,+ uM (8.8]

The field at a point inside a magnetized material is the sum of the applied field B,
and a contribution from the magnetization M of the material. The magnetization arises
from the application of B, due to the current of free carriers in the solenoid wires,
called the conduction current, which we can externally adjust. It becomes useful to
introduce a vector field that represents the effect of the external or conduction current
alone. In general, B — 1,M at a point is the contribution of the external currents alone
to the magnetic field at that point inside the material that we called B,. B — 1«,M rep-
resents a magnetizing field because it is the field of the external currents that magne-
tize the material. The magnetizing field H is defined as

1
=—B-M
Ko

H= ——I—Bo
Ko
The magnetizing field is also known as the magnetic field intensity and is
measured in A m~!. The reason for the division by u, is that the resulting vector field
H becomes simply related to the external conduction currents (through Ampere’s law).
Since in the solenoid B, is u,nI, we see that the magnetizing field in a solenoid is

[8.10]

[8.9]
or

H = nl = Total conduction current per unit length

Figure 8.8 The field B in the material
inside the solenoid is due to the conduction
current | through the wires and the
magnefization current I, on the surface of the
magnetized medium, or B = B, + oM.

691

Magnetic
fieldina
magnetized
medium

Definition
of the
magnetizing
field

Definition
of the
magnetizing
field



692

Definition of
magnetic
permeability

Definition of
relative
permeability

Definition of
magnetic
susceptibility

Relative
permeability
and
susceptibility

CHAPTER 8 ¢ MAGNETIC PROPERTIES AND SUPERCONDUCTIVITY

It is generally helpful to imagine H as the cause and B as the effect. The cause H
depends only on the external conduction currents, whereas the effect B depends on the
magnetization M of matter.

8.1.5 MAGNETIC PERMEABILITY AND MAGNETIC SUSCEPTIBILITY

Suppose that at a point P in a material, the magnetic field is B and the magnetizing
field is H. We let B, be the magnetic field at P in the absence of any material (i.e., in
free space). The magnetic permeability of the medium at P is defined as the magnetic
field per unit magnetizing field,

B

K=&

It relates the effect B to the cause H at the same point P inside a material. In sim-

ple qualitative terms, 4 represents to what extent a medium is permeable by magnetic

fields. Relative permeability 1, of a medium is the fractional increase in the magnetic

field with respect to the field in free space when a material medium is introduced. For

example, suppose that the field in a solenoid with free space in it is B, but with mate-
rial inserted it is B. Then u, is defined by

[8.11]

B

[8.12
woH :

B
=g =

From Equations 8.11 and 8.12, clearly,

U= Lolhr

The magnetization M produced in a material depends on the net magnetic field B.
It would be natural to proceed as in dielectrics by relating M to B analogously to re-
lating P (polarization) to E (electric field). However, for historic reasons, M is related
to H, the magnetizing field. Suppose that the medium is isotropic (same properties in
all directions), then magnetic susceptibility x,, of the medium is defined simply by

M = yx,,H [8.13]

This relationship is not obeyed by all magnetic materials. For example, as we will
see later, ferromagnetic materials do not obey Equation 8.12. Since the magnetic field

B=u,H+M)
we have
B = uoH + oM = poH + poxmH = po(l + xm)H
and
Ur =14 xm [8.14]

The presence of a magnetizable material is conveniently accounted for by using the
relative permeability u,, or (1 + x.,), to simply multiply u,. Alternatively, one can
simply replace u, with 4 = p,u,. For example, the inductance of the solenoid with a
magnetic medium inside increases by a factor of u,.

Table 8.1 provides a summary of various important magnetic quantities, their def-
initions, and units.
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Table 8.1 Magnetic quantities and their units

Magnetic Quantity Symbol  Definition Units Comment
Magnetic field; B F=gvxB T = tesla = Produced by moving charges
magnetic induction webers m™2 or currents, acts on moving
charges or currents.
Magnetic flux (] AP = Buormal AA Wb = weber A is flux through AA and
Buormal 18 normal to AA.
Total flux through any
closed surface is zero.
Magnetic dipole [T wm = 1A Am? Experiences a torque in
moment B and a net force in a
nonuniform B.
Bohr magneton B B =eh/2m, Am?or Magnetic moment due to the
JT-! spin of the electron.
B=927x 10" Am?
Magnetization M Magnetic moment Am~! Net magnetic moment in a
vector per unit volume material per unit volume.
Magnetizing field; H H=B/u, —M Am™! H is due to external
magnetic field conduction currents only
intensity and is the cause of B in a
material.
Magnetic Xm M= x,,H None Relates the magnetization of
susceptibility a material to the
magnetizing field H.
Absolute o ¢ = (8oito] /2 Hm™ = A fundamental constant in
permeability Wbm™" A~!  magnetism. In free space,
Mo = B/H.
Relative r r = Blu,H None
permeability
Magnetic M W= fLolhr Hm™! Not to be confused with
permeability magnetic moment.
Inductance L L = @/l H (henries) Total flux threaded per unit
current.
Magnetostatic Eyol dEy = HdB Jm3 dEyq is the energy required

energy density per unit volume

in changing B by dB.

AMPERE’S LAW AND THE INDUCTANCE OF A TOROIDAL COIL  Ampere’s law provides a
relationship between the conduction current I and the magnetic field intensity H threading this

current. The conduction current / is the current due to the flow of free charge carriers through a

conductor and not due to the magnetization of any medium. Consider an arbitrary closed path C

around a conductor carrying a current I, as shown in Figure 8.9. The tangential component of H

to the curve C at point P is H,.If d! is an infinitesimally small path length of C at P, as shown

in Figure 8.9, then the summation of H, d! around the path C gives the conduction current en-

closed within C. This is Ampere’s law,

% Hdl=1
C

[8.15]  Ampere’s law
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Figure 8.9 Ampere’s circuital law. Figure 8.10 A toroidal coil with N turns.

Consider the toroidal coil with N turns shown in Figure 8.10. First assume that the toroid
core is air (4, =~ 1). Suppose that the current through the coils is /. By symmetry, the magnetic
field intensity H inside the toroidal core is the same everywhere and is directed along the cir-
cumference. Suppose that [ is the length of the mean circumference C. The current is linked
N times by the circumference C, so Equation 8.15 is

fH,dl:H(:NI
c

or
NI

H=—
¢

The magnetic field B, with air as core material is then simply

woNI
]

B, = u,H =

When the toroidal coil has a magnetic medium with a relative permeability u,, the mag-
netic field intensity is still H because the conduction current / has not changed. But the magnetic
field B is now different than B, and is given by

oty NI

B = p,uH =
Mokt 7

If A is the cross-sectional area of the toroid, then the total flux ¢ through the core is BA or
wotr NAI /L. The current I in Figure 8.10 threads the flux N times. The inductance L of the
toroidal coil, by definition, is then

L Total flux threaded ~ N®  u,u,N?A
- Current T £
Having a magnetic material as the toroid core increases the inductance by a factor of u, in the
same way a dielectric material increases the capacitance by a factor of &,.

EXAMPLE 8.2

MAGNETOSTATIC ENERGY PER UNIT VOLUME Consider a toroidal coil with N turns that is
energized from a voltage supply through a rheostat, as shown in Figure 8.11. The core of the
toroid may be any material. Suppose that by adjusting the rheostat we increase the current i
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Figure 8.11 Energy required to magnetize a
toroidal coil.

supplied to the coil. The current i produces magnetic flux ¢ in the core, which is BA, where B
is the magnetic field and A is the cross-sectional area. We can now use Ampere’s law for H to
relate the current i to H, as in Example 8.1. If £ is the mean circumference, then

Hf = Ni [8.16]

The changing current means that the flux is also changing (both increasing). We know from
Faraday’s law that a changing flux that threads a circuit generates a voltage v in that circuit
given by the rate of change of total threaded flux, or N ®. Lenz’s law makes the polarity of the
induced voltage oppose the applied voltage. Suppose that in a time interval ¢ seconds, the mag-
netic field within the core changes by éB; then §® = AéB and

& (Total flux threaded ) Né&d éB
V= = = NA— [8.17]
8t 3t 8t
The battery has to supply the current i against this induced voltage v, which means that it
has to do electrical work iv every second. In other words, the battery has to do work iv 8¢ ina
time interval 87 to supply the necessary current to increase the magnetic field by éB. The elec-
tric energy 8E that is input into the coil in time 8¢ is then, using Equations 8.16 and 8.17,

H¢ 6B
8E =ivét=|— |\ NA— |6t = (AL)H B
N ot

This energy SE is the work done in increasing the field in the core by §B. The volume of
the toroid is A£. Therefore, the total energy or work required per unit volume to increase the
magnetic field from an initial value B; to a final value B; in the toroid is

B2
Evol = H dB [8. 1 8]

By

where the integration limits are determined by the initial and final magnetic field. This is the ex-
pression for calculating the energy density (energy per unit volume) required to change the
field from B to B,. It should be emphasized that Equation 8.18 is valid for any medium. We
conclude that an incremental energy density of dE,, = H dB is required to increase the mag-
netic field by dB at a point in any medium including free space. .

We can now consider a core material that we can represent by a constant relative perme-
ability 1,. This means we can exclude those materials that do not have a linear relationship
between B and H, such as ferromagnetic and ferrimagnetic materials, which we will discuss
later. If the core is free space or air, then u, = 1.

Suppose that we increase the current in Figure 8.11 from zero to some final value I so that
the magnetic field changes from zero to some final value B. Since the medium has a constant
relative permeability 1,, we can write

B = u,pH
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and use this in Equation 8.18 to integrate and find the energy per unit volume needed to
establish the field B or field intensity H

1 2 B?
Evw = curitoH® =

= [8.19]
2 2pr o

This is the energy absorbed from the battery per unit volume of core medium to establish
the magnetic field. This energy is stored in the magnetic field and is called magnetostatic
energy density. It is a form of magnetic potential energy. If we were to suddenly remove the
battery and short those terminals, the current will continue to flow for a short while (deter-
mined by L/R) and do external work in heating the resistor. This external work comes from
the stored energy in the magnetic field. If the medium is free space, or air, then the energy
density is

Evit) = 1,17 = 2
vol(@Il) = — U, =

| 2 12 20

A magnetic field of 2 T corresponds to a magnetostatic energy density of 1.6 MJ m™3 or

1.6 J cm™3. The energy in a magnetic field of 2 Tin a 1 cm® volume (size of a thimble) has the
work ability (potential energy) to raise an average-sized apple by 5 feet. We should note that as
long as the core material is linear, that is, 4, is independent of the magnetic field itself, magne-
tostatic energy density can also be written as

1
Evq = '2'HB [8.20]

8.2 MAGNETIC MATERIAL CLASSIFICATIONS

In general, magnetic materials are classified into five distinct groups: diamagnetic,
paramagnetic, ferromagnetic, antiferromagnetic, and ferrimagnetic. Table 8.2 provides
a summary of the magnetic properties of these classes of materials.

8.2.1 DIAMAGNETISM

Typical diamagnetic materials have a magnetic susceptibility that is negative and
small. For example, the silicon crystal is diamagnetic with x, = —5.2 x 107%. The
relative permeability of diamagnetic materials is slightly less than unity. When a dia-
magnetic substance such as a silicon crystal is placed in a magnetic field, the mag-
netization vector M in the material is in the opposite direction to the applied field
uoH and the resulting field B within the material is less than u,H. The negative
susceptibility can be interpreted as the diamagnetic substance trying to expel the
applied field from the material. When a diamagnetic specimen is placed in a nonuni-
form magnetic field, the magnetization M of the material is in the opposite direction
to B and the specimen experiences a net force toward smaller fields, as depicted in
Figure 8.12. A substance exhibits diamagnetism whenever the constituent atoms in
the material have closed subshells and shells. This means that each constituent atom
has no permanent magnetic moment in the absence of an applied field. Covalent
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Table 8.2 Classification of magnetic materials

x"l
Type (typical values) X versus T Comments and Examples
Diamagnetic Negative and T independent Atoms of the material have closed

Paramagnetic

Ferromagnetic

Antiferromagnetic

Ferrimagnetic

small (—107%)

Negative and
large (—1)

Positive and small
(1073-107%)

Positive and
small (10~3)

Positive and
very large

Positive and
small

Positive and
very large

Below a critical
temperature

Independent of T

Curie or Curie-Weiss
law, ym = C/(T — T¢)

Ferromagnetic below
and paramagnetic
above the Curie
temperature

Antiferromagnetic
below and
paramagnetic above
the Néel temperature

Ferrimagnetic below
and paramagnetic
above the Curie
temperature

shells. Organic materials, e.g.,
many polymers; covalent solids,
e.g., Si, Ge, diamond; some
ionic solids, e.g., alkalihalides;
some metals, e.g., Cu, Ag, Au.

Superconductors

Due to the alignment of spins of
conduction electrons. Alkali
and transition metals.

Materials in which the constituent
atoms have a permanent magnetic
moment, e.g., gaseous and liquid
oxygen; ferromagnets (Fe),
antiferromagnets (Cr), and
ferrimagnets (Fe;0;4) at high
temperatures.

May possess a large permanent
magnetization even in the
absence of an applied field.
Some transition and rare earth
metals, Fe, Co, Ni, Gd, Dy.

Mainly salts and oxides of
transition metals, e.g., MnO,
NiO, MnF,, and some
transition metals, a—Cr, Mn.

May possess a large permanent
magnetization even in the
absence of an applied field.
Ferrites.

Figure 8.12 A diamagnetic material placed in a nonuniform
magnetic field experiences a force toward smaller fields.

This repels the diamagnetic material away from a permanent
magnet.

697



698

CHAPTER 8 ¢ MAGNETIC PROPERTIES AND SUPERCONDUCTIVITY

crystals and many ionic crystals are typical diamagnetic materials because the con-
stituent atoms have no unfilled subshells. Superconductors, as we will discuss later,
are perfect diamagnets with x, = —1 and totally expel the applied field from the
material.

8.2.2 PARAMAGNETISM

Paramagnetic materials have a small positive magnetic susceptibility. For example,
oxygen gas is paramagnetic with x,, = 2.1 x 107 at atmospheric pressure and room
temperature. Each oxygen molecule has a net magnetic dipole moment . In the ab-
sence of an applied field, these molecular moments are randomly oriented due to the
random collisions of the molecules, as depicted in Figure 8.13a. The magnetization of
the gas is zero. In the presence of an applied field, the molecular magnetic moments
take various alignments with the field, as illustrated in Figure 8.13b. The degree of
alignment of ., with the applied field and hence magnetization M increases with the
strength of the applied field u,H. Magnetization M typically decreases with increasing
temperature because at higher temperatures there are more molecular collisions, which
destroy the alignments of molecular magnetic moments with the applied field. When a
paramagnetic substance is placed in a nonuniform magnetic field, the induced magne-
tization M is along B and there is a net force toward greater fields. For example, when
liquid oxygen is poured close to a strong magnet, as depicted in Figure 8.14, the liquid
becomes attracted to the magnet.

Many metals are also paramagnetic, such as magnesium with x,, = 1.2 x 1075.The
origin of paramagnetism (called Pauli spin paramagnetism) in these metals is due to
the alignment of the majority of spins of conduction electrons with the field.

;t,,H
O— 0O +O Dewar
‘/O O/ O/‘ (i O/' ‘/O . O\i Strong magnet

__M —-’ . .
\O ?'/Q O ‘/O’P O\ s N Liquid oxygen
(o)p,av=oondM=o (b);.l.av¢°0ndM=XmH

Figure 8.13 Figure 8.14 A paramagnetic
(@) In @ paramagnetic material, each individual atom possesses a moteria! Plched in 0."°"U"if°fm
permanent magnetic moment, but due to thermal agitation there magpnetic field experiences a force
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8.2 MAGNETIC MATERIAL CLASSIFICATIONS

8.2.3 FERROMAGNETISM

Ferromagnetic materials such as iron can possess large permanent magnetizations
even in the absence of an applied magnetic field. The magnetic susceptibility x,, is
typically positive and very large (even infinite) and, further, depends on the applied
field intensity. The relationship between the magnetization M and the applied mag-
netic field u,H is highly nonlinear. At sufficiently high fields, the magnetization M of
the ferromagnet saturates. The origin of ferromagnetism is the quantum mechanical
exchange interaction (discussed later) between the constituent atoms that results in re-
gions of the material possessing permanent magnetization. Figure 8.15 depicts a region
of the Fe crystal, called a magnetic domain, that has a net magnetization vector M due
to the alignment of the magnetic moments of all Fe atoms in this region. This crystal
domain has magnetic ordering as all the atomic magnetic moments have been aligned
parallel to each other. Ferromagnetism occurs below a critical temperature called the
Curie temperature T¢. At temperatures above T¢, ferromagnetism is lost and the mate-
rial becomes paramagnetic.

8.24 ANTIFERROMAGNETISM

Antiferromagnetic materials such as chromium have a small but positive suscepti-
bility. They cannot possess any magnetization in the absence of an applied field, in
contrast to ferromagnets. Antiferromagnetic materials possess a magnetic ordering
in which the magnetic moments of alternating atoms in the crystals align in opposite
directions, as schematically depicted in Figure 8.16. The opposite alignments of
atomic magnetic moments are due to quantum mechanical exchange forces (de-
scribed later in Section 8.3). The net result is that in the absence of an applied field,
there is no net magnetization. Antiferromagnetism occurs below a critical tempera-
ture called the Néel temperature Ty. Above Ty, antiferromagnetic material becomes
paramagnetic.

M M
Figure 8.15 In a magnetized region of a Figure 8.16 In this
ferromagnetic material such as iron, all the antiferromagnetic BCC crystal
magnetic moments are spontaneously aligned in (Cr), the magnetic moment-of the
the same direction. center atom is canceled by the
There is a strong magnefization vector M even magnetic moments of the corner
in the absence of an applied field. atoms (one-eighth of the corner

atom belongs to the unit cell).
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Figure 8.17 lllustration of magnetic ordering in the . T

ferrimagnetic crystal. O_>.<.. ....... O_.,,_*

All A atoms have their spins aligned in one direction and :

all B atoms have their spins aligned in the opposite “ """" O—=--<@- .O_'
direction. As the magnetic moment of an A atom is greater c' : : .

than that of a B atom, there is net magnetization M in the <@ O~ <@
crystal. A B

8.2.5 FERRIMAGNETISM

Ferrimagnetic materials such as ferrites (e.g., Fe304) exhibit magnetic behavior simi-
lar to ferromagnetism below a critical temperature called the Curie temperature T¢.
Above T they become paramagnetic. The origin of ferrimagnetism is based on mag-
netic ordering, as schematically illustrated in Figure 8.17. All A atoms have their spins
aligned in one direction and all B atoms have their spins aligned in the opposite direc-
tion. As the magnetic moment of an A atom is greater than that of a B atom, there is
net magnetization M in the crystal. Unlike the antiferromagnetic case, the oppositely
directed magnetic moments have different magnitudes and do not cancel. The net ef-
fect is that the crystal can possess magnetization even in the absence of an applied
field. Since ferrimagnetic materials are typically nonconducting and therefore do not
suffer from eddy current losses, they are widely used in high-frequency electronics
applications.

All useful magnetic materials in electrical engineering are invariably ferromag-
netic or ferrimagnetic.

83 FERROMAGNETISM ORIGIN
AND THE EXCHANGE INTERACTION

The transition metals iron, cobalt, and nickel are all ferromagnetic at room tempera-
ture. The rare earth metals gadolinium and dysprosium are ferromagnetic below room
temperature. Ferromagnetic materials can exhibit permanent magnetization even in the
absence of an applied field; that is, they possess a susceptibility that is infinite.

In a magnetized iron crystal, all the atomic magnetic moments are aligned in the
same direction, as illustrated in Figure 8.15, where the moments in this case have all
been aligned along the [100] direction, which gives net magnetization along this di-
rection. It may be thought that the reason for the alignment of the moments is the mag-
netic forces between the moments, just as bar magnets will tend to align head to tail in
an SNSN . . . fashion. This is not, however, the cause, as the magnetic potential energy
of interaction is small, indeed smaller than the thermal energy.

The iron atom has the electron structure [Ar]3d%4s?. An isolated iron atom has
only the 3d subshell with four of the five orbitals unfilled. By virtue of Hund’s rule, the
electrons try to align their spins so that the five 3d orbitals contain two paired electrons
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Figure 8.18 The isolated Fe Figure 8.19 Hund’s rule for an atom
atom has four unpaired spins and a with many electrons is based on the
spin magnetic moment of 48. exchange interaction.

and four unpaired electrons, as in Figure 8.18. The isolated atom has four parallel elec-
tron spins and hence a spin magnetic moment of 48.

The origin of Hund’s rule, visualized in Figure 8.19, lies in the fact that when the
spins are parallel (same m;), as a requirement of the Pauli exclusion principle, the
electrons must occupy orbitals with different m, and hence possess different spatial
distributions (recall that m, determines the orientation of an orbit). Different m, val-
ues result in a smaller Coulombic repulsion energy between the electrons compared
with the case where the electrons have opposite spins (different m;), where they
would be in the same orbital (same m,), that is, in the same spatial region. It is appar-
ent that even though the interaction energy between the electrons has nothing to do
with magnetic forces, it does depend nonetheless on the orientations of their spins
(m;), or on their spin magnetic moments, and it is less when the spins are parallel. Two
electrons parallel their spins not because of the direct magnetic interaction between
the spin magnetic moments but because of the Pauli exclusion principle and the
electrostatic interaction energy. Together they constitute what is known as an
exchange interaction, which forces two electrons to take m; and m, values that result
in the minimum of electrostatic energy. In an atom, the exchange interaction therefore
forces two electrons to take the same m; but different m, if this can be done within the
Pauli exclusion principle. This is the reason an isolated Fe atom has four unpaired
spins in the 3d subshell.

In the crystal, of course, the outer electrons are no longer strictly confined to their
parent Fe atoms, particularly the 4s electrons. The electrons now have wavefunctions
that belong to the whole solid. Something like Hund’s rule also operates at the crystal
level for Fe, Co, and Ni. If two 3d electrons parallel their spins and occupy different
wavefunctions (and hence different negative charge distributions), the resulting mu-
tual Coulombic repulsion between them and also with all the other electrons and the
attraction to the positive Fe ions result in an overall reduction of potential energy.
This reduction in energy is again due to the exchange interaction and is a direct
consequence of the Pauli exclusion principle and the Coulombic forces. Thus, the ma-
jority of 3d electrons spontaneously parallel their spins without the need for the appli-
cation of an external magnetic field. The number of electrons that actually parallel
their spins depends on the strength of the exchange interaction, and for the iron crys-
tal this turns out to be about 2.2 electrons per atom. Since typically the wavefunctions
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A
Co )
Fe Ni
+ Gd

Figure 8.20 The exchange integral as a function of
r/rq, where ris the interatomic distance and rg the radius 0 T,
of the d orbit (or the average d subshell radius). Mn
Cr to Ni are transition metals. For Gd, the x axis is r/r, - Cr
where r¢is the radius of the f orbit.

of the 3d electrons in the whole iron crystal show localization around the iron ions,
some people prefer to view the 3d electrons as spending the majority of their time
around Fe atoms, which explains the reason for drawing the magnetized iron crystal
as in Figure 8.15.

It may be thought that all solids should follow the example of Fe and become
spontaneously ferromagnetic since paralleling spins would result in different spa-
tial distributions of negative charge and probably a reduction in the electrostatic en-
ergy, but this is not generally the case at all. We know that, in the case of covalent
bonding, the electrons have the lowest energy when the two electrons spin in oppo-
site directions. In covalent bonding in molecules, the exchange interaction does not
reduce the energy. Making the electron spins parallel leads to spatial negative
charge distributions that result in a net mutual electrostatic repulsion between the
positive nuclei.

In the simplest case, for two atoms only, the exchange energy depends on the in-
teratomic separation between two interacting atoms and the relative spins of the two
outer electrons (labeled as 1 and 2). From quantum mechanics, the exchange interac-
tion can be represented in terms of an exchange energy E as

Eex=-2J.8:-8; [8.21]

where S; and S, are the spin angular momenta of the two electrons and J, is a numeri-
cal quantity called the exchange integral that involves integrating the wavefunctions
with the various potential energy interaction terms. It therefore depends on the elec-
trostatic interactions and hence on the interatomic distance. For the majority of solids,
J. is negative, so the exchange energy is negative if S; and S, are in the opposite di-
rections, that is, the spins are antiparallel (as we found in covalent bonding). This is the
antiferromagnetic state. For Fe, Co, and Ni, however, J, is positive. E. is then nega-
tive if S; and S, are parallel. Spins of the 3d electrons on the Fe atoms therefore spon-
taneously align in the same direction to reduce the exchange energy. This spontaneous
magnetization is the phenomenon of ferromagnetism. Figure 8.20 illustrates how J,
changes with the ratio of interatomic separation to the radius of the 3d subshell (r/r,).
For the transition metals Fe, Co, and Ni, the r/r, is such that J, is positive.? In all
other cases, it is negative and does not produce ferromagnetic behavior. It should be

| 3 According to H. P. Myers, Introductory Solid State Physics 2nd ed., London: Taylor and Francis Ltd., 1997, p. 362,
there have been no theoretical calculations of the exchange integral J, for any real magnetic substance.
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mentioned that Mn, which is not ferromagnetic, can be alloyed with other elements to
increase r/r; and hence endow ferromagnetism in the alloy.
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SATURATION MAGNETIZATION IN IRON The maximum magnetization, called saturation
magnetization M;,,, in iron is about 1.75 x 10¢ A m~!. This corresponds to all possible net spins
aligning parallel to each other. Calculate the effective number of Bohr magnetons per atom that
would give Mgy, given that the density and relative atomic mass of iron are 7.86 g cm~> and
55.85, respectively.

SOLUTION
The number of Fe atoms per unit volume is
oN4  (7.86 x 10° kg m™3)(6.022 x 10% mol™})
" My T 5585 x 102 kg mol ™'

= 8.48 x 10%® atoms m~3

If each Fe atom contributes x number of net spins, then since each net spin has a magnetic
moment of 8, we have,

My = ng(xB)
SO

<

- 1.75 x 10°® ~ 29
naf  (8.48 x 10%)(9.27 x 10-24)

In the solid, each Fe atom contributes only 2.2 Bohr magnetons to the magnetization even
though the isolated Fe atom has 4 Bohr magnetons. There is no orbital contribution to the mag-
netic moment per atom in the solid because all the outer electrons, 3d and 4s electrons, can be
viewed as belonging to the whole crystal, or being in an energy band, rather than orbiting
individual atoms. A 3d electron is attracted by various Fe ions in the crystal and therefore does
not experience a central force, in contrast to the 3d electron in the isolated Fe atom that orbits
the nucleus. The orbital momentum in the crystal is said to be quenched.

We should note that when the magnetization is saturated, all atomic magnetic moments are
aligned. The resulting magnetic field within the iron specimen in the absence of an applied
magnetizing field (H = 0) is

sal

X =

Bt = oMy = 22T

EXAMPLE 8.3

84 SATURATION MAGNETIZATION
AND CURIE TEMPERATURE

The maximum magnetization in a ferromagnet when all the atomic magnetic moments
have been aligned as much as possible is called the saturation magnetization Mgy. In the
iron crystal, for example, this corresponds to each Fe atom with an effective spin mag-
netic moment of 2.2 Bohr magnetons aligning in the same direction to give a magnetic
field u,Ms, or 2.2 T. As we increase the temperature, lattice vibrations become more en-
ergetic, which leads to a frequent disruption of the alignments of the spins. The spins can-
not align perfectly with each other as the temperature increases due to lattice vibrations
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Figure 8.21

Normalized saturated
magnetization versus reduced temperature T/Tc
where Tc is the Curie temperature (1043 K).
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randomly agitating the individual spins. When an energetic lattice vibration passes
through a spin site, the energy in the vibration may be sufficient to disorientate the spin
of the atom. The ferromagnetic behavior disappears at a critical temperature called the
Curie temperature, denoted by T, when the thermal energy of lattice vibrations in the
crystal can overcome the potential energy of the exchange interaction and hence destroy
the spin alignments. Above the Curie temperature, the crystal behaves as if it were para-
magnetic. The saturation magnetization My, therefore, decreases from its maximum
value M,(0) at absolute zero of temperature to zero at the Curie temperature. Figure 8.21
shows the dependence of M, on the temperature when Mg, has been normalized to
M,(0) and the temperature is the reduced temperature, that is, T/Tc. At T/Tc =1,
Mg, = 0. When plotted in this way, the ferromagnets cobalt and nickel follow closely
the observed behavior for iron. We should note that since for iron T¢c = 1043 K, at room
temperature, T/ Tc = 0.29 and M, is very close to its value at Mg,(0).

Since at the Curie temperature, the thermal energy, of the order of kT¢, is suffi-
cient to overcome the energy of the exchange interaction E,, that aligns the spins, we
can take kT¢ as an order of magnitude estimate of E.. For iron, E is ~0.09 eV and
for cobalt this is ~0.1 eV.

Table 8.3 summarizes some of the important properties of the ferromagnets Fe,
Co, Ni, and Gd (rare earth metal).

Table 8.3 Properties of the ferromagnets Fe, Co, Ni, and Gd

Fe Co Ni Gd
Crystal structure BCC HCP FCC HCP
Bohr magnetons per atom 222 1.72 0.60 7.1
M(0) MAm™}) 1.75 1.45 0.50 2.0
Bgat = o Mgat(T) 2.2 1.82 0.64 2.5
Tc 770 °C 1127 °C 358 °C 16 °C

1043 K 1400 K 631 K 289 K
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8.5 MAGNETIC DOMAINS:
FERROMAGNETIC MATERIALS

8.5.1 MAGNETIC DOMAINS

A single crystal of iron does not necessarily possess a net permanent magnetization in
the absence of an applied field. If a magnetized piece of iron is heated to a temperature
above its Curie temperature and then allowed to cool in the absence of a magnetic
field, it will possess no net magnetization. The reason for the absence of net magneti-
zation is due to the formation of magnetic domains that effectively cancel each other,
as discussed below. A magnetic domain is a region of the crystal in which all the spin
magnetic moments are aligned to produce a magnetic moment in one direction only.
Figure 8.22a shows a single crystal of iron that has a permanent magnetization as
a result of ferromagnetism (aligning of all atomic spins). The crystal is like a bar mag-
net with magnetic field lines around it. As we know, there is potential energy (PE),
called magnetostatic energy, stored in a magnetic field, and we can reduce this energy
in the external field by dividing the crystal into two domains where the magnetizations
are in the opposite directions, as shown in Figure 8.22b. The external magnetic field
lines are reduced and there is now less potential energy stored in the magnetic field.
There are only field lines at the ends. This arrangement is energetically favorable
because the magnetostatic energy has been reduced by decreasing the external field

Domain wall (180°) Closure domain

Yp\ 90° domain wall

Closure domains
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N N\l s ST N ST
! N yg A
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(o (b) (o L
Figure 8.22

(a) Magnetized bar of ferromagnet in which there is only one domain and hence an external

magnetic field.

(b) Formation of two domains with opposite magnetizations reduces the external field. There are,
however, field lines at the ends.

(c) Domains of closure fitting at the ends eliminate the external fields at the ends.

(d) A specimen with several domains and closure domains. There is no external magnetic field
and the specimen appears unmagnetized.

705



706

CHAPTER 8 ¢ MAGNETIC PROPERTIES AND SUPERCONDUCTIVITY

lines. However, there is now a boundary, called a domain wall (or Bloch wall), between
the two domains where the magnetization changes from one direction to the opposite
direction and hence the atomic spins do, also. It requires energy to rotate the atomic
spin through 180° with respect to its neighbor because the exchange energy favors
aligning neighboring atomic spins (0°). The wall in Figure 8.22b is a 180° wall inas-
much as the magnetization through the wall is rotated by 180°. It is apparent that the
wall region where the neighboring atomic spins change their relative direction (or ori-
entation) from one domain to the neighboring one has higher PE than the bulk of the
domain, where all the atomic spins are aligned. As we will show below, the domain
wall is not simply one atomic spacing but has a finite thickness, which for iron is typ-
ically of the order of 0.1 pm, or several hundred atomic spacings. The excess energy in
the wall increases with the area of the wall.

The magnetostatic energy associated with the field lines at the ends in Fig-
ure 8.22b can be further reduced by eliminating these external field lines by closing the
ends with sideway domains with magnetizations at 90°, as shown in Figure 8.22c.
These end domains are closure domains and have walls that are 90° walls. The mag-
netization is rotated through 90° through the wall. Although we have reduced the magne-
tostatic energy, we have increased the potential energy in the walls by adding additional
walls. The creation of magnetic domains continues (spontaneously) until the potential
energy reduction in creating an additional domain is the same as the increase in creat-
ing an additional wall. The specimen then possesses minimum potential energy and is
in equilibrium with no net magnetization. Figure 8.22d shows a specimen with several
domains and no net magnetization. The sizes, shapes, and distributions of domains de-
pend on a number of factors, including the size and shape of the whole specimen. For
iron particles of dimensions less than of the order of 0.01 um, the increase in the poten-
tial energy in creating a domain wall is too costly and these particles are single do-
mains and hence always magnetized.

The magnetization of each domain is normally along one of the preferred directions
in which the atomic spin alignments are easiest (the exchange interaction is the
strongest). For iron, the magnetization is easiest along any one of six (100) directions
(along cube edges), which are called easy directions. The domains have magnetizations
along these easy directions. The magnetization of the crystal along an applied field oc-
curs, in principle, by the growth of domains with magnetizations (or components of M)
along the applied field (H), as illustrated in Figure 8.23a and b. For simplicity, the mag-
netizing field is taken along an easy direction. The Bloch wall between the domains A
and B migrates toward the right, which enlarges the domain A and shrinks domain B,
with the net result that the crystal has an effective magnetization M along H. The migra-
tion of the Bloch wall is caused by the spins in the wall, and also spins in section B ad-
jacent to the wall, being gradually rotated by the applied field (they experience a torque).
The magnetization process therefore involves the motions of Bloch walls in the crystal.

8.5.2 MAGNETOCRYSTALLINE ANISOTROPY

Ferromagnetic crystals characteristically exhibit magnetic anisotropy, which means
that the magnetic properties are different along different crystal directions. In the case
of iron (BCC), the spins in a domain are most easily aligned in any of the six [100] type
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directions, collectively labeled as (100), and correspond to the six edges of the cubic
unit cell. The exchange interactions are such that spin magnetic moments are most eas-
ily aligned with each other if they all point in one of the six (100) directions. Thus
(100) directions in the iron crystal constitute the easy directions for magnetization.
When a magnetizing field H along a [100] direction is applied, as illustrated in Fig-
ure 8.23a and b, domain walls migrate to allow those domains (e.g., A) with magneti-
zations along H to grow at the expense of those domains (e.g., B) with magnetizations
opposing H. The observed M versus H behavior is shown in Figure 8.24. Magnetiza-
tion rapidly increases and saturates with an applied field of less than 0.01 T.

On the other hand, if we want to magnetize the crystal along the [111] direction by
applying a field along this direction, then we have to apply a stronger field than that
along [100]. This is clearly shown in Figure 8.24, where the resulting magnetization
along [111] is smaller than that along [100] for the same magnitude of applied field.
Indeed, saturation is reached at an applied field that is about a factor of 4 greater than

Figure 8.24 Magnetocrystalline anisotropy in a single iron

M versus H depends on the crystal direction and is easiest along
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Table 8.4 Exchange interaction, magnetocrystalline anisotropy energy K, and saturation magnetostriction coefficient Ay

Eex~kIc K Asat
Material Crystal (meV) Easy Hard (mJ em™3) (x 1079%)
Fe BCC 90 <100>; cube edge <111>; cube diagonal 48 20 [100]
-20[111]
Co HCP 120 1/ to ¢ axis L to c axis 450
Ni FCC 50 <111>; cube diagonal <100>; cube edge 5 ~46 [100]

~24[111]

NOTE: K is the magnitude of what is called the first anisotropy constant (K;) and is approximately the magnitude of the anisotropy energy.
Eex is an estimate from kT, where T¢ is the Curie temperature. All approximate values are from various sources. (Further data can be found
in D. Jiles, Introduction to Magnetism and Magnetic Materials, London, England: Chapman and Hall, 1991.)

that along [100]. The [111] direction in the iron crystal is consequently known as the
hard direction. The M versus H behavior along [100], [110], and [111] directions in
an iron crystal and the associated anisotropy are shown in Figure 8.24.

When an external field is applied along the diagonal direction OD in Figure 8.24,
initially all those domains with M along OA, OB, and OC, that is, those with magne-
tization components along OD, grow by consuming those with M in the wrong direc-
tion and eventually take over the whole specimen. This is an easy process (similar
to the process along [100]) and requires small fields and represents the processes from
0 to P on the magnetization curve for [111] in Figure 8.24. However, from P onwards,
the magnetizations in the domains have to be rotated away from their easy directions,
that is, from OA, OB, and OC toward OD. This process consumes substantial energy
and hence needs much stronger applied fields.

It is apparent that the magnetization of the crystal along [100] needs the least
energy, whereas that along [111] consumes the greatest energy. The excess energy
required to magnetize a unit volume of a crystal in a particular direction with respect
to that in the easy direction is called the magnetocrystalline anisotropy energy and
is denoted by K. For iron, the anisotropy energy is zero for [100] and largest for the
[111] direction, about 48 kJ m~3 or 3.5 x 10~¢ eV per atom. For cobalt, which has the
HCP crystal structure, the anisotropy energy is at least an order of magnitude greater.
Table 8.4 summarizes the easy and hard directions, and the anisotropy energy K for the
hard direction.

8.5.3 DOMAIN WALLS

We recall that the spin magnetic moments rotate across a domain wall. We men-
tioned that the wall is not simply one atomic spacing wide, as this would mean two
neighboring spins being at 180° to each other and hence possessing excessive ex-
change interaction. A schematic illustration of the structure of a typical 180° Bloch
wall, between two domains A and B, is depicted in Figure 8.25. It can be seen that
the neighboring spin magnetic moments are rotated gradually, and over several hun-
dred atomic spacings the magnetic moment reaches a rotation of 180°. Exchange
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Figure 8.25 In a Bloch wall, the neighboring spin magnetic moments rotate gradually,
and it takes several hundred atomic spacings to rotate the magnetic moment by 180°.

forces between neighboring atomic spins favor very little relative rotation. Had it
been left to exchange forces alone, relative rotation of neighboring spins would be so
minute that the wall would have to be very thick (infinitely thick) to achieve a 180°
rotation.

However, magnetic moments that are oriented away from the easy direction pos-
sess excess energy, called the anisotropy energy (K). If the wall is thick, then it will
contain many magnetic moments rotated away from the easy direction and there would
be a substantial anisotropy energy in the wall. Minimum anisotropy energy in the wall
is obtained when the magnetic moment changes direction by 180° from the easy di-
rection along +z to that along —z in Figure 8.25 without any intermediate rotations
away from z. This requires a wall of one atomic spacing. In reality, the wall thickness
is a compromise between the exchange energy, demanding a thick wall, and anisotropy
energy, demanding a thin wall. The equilibrium wall thickness is that which minimizes
the total potential energy, which is the sum of the exchange energy and the anisotropy
energy within the wall. This thickness turns out to be ~0.1 um for iron and less for
cobalt, in which the anisotropy energy is greater.
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MAGNETIC DOMAIN WALL ENERGY AND THICKNESS The Bloch wall energy and thickness
depend on two main factors: the exchange energy E., (J atom~!) and magnetocrystalline energy
K (J m™?). Suppose that we consider a Bloch wall of unit area, and thickness 8, and calculate
the potential energy U, in this wall due to the exchange energy and the magnetocrystalline
anisotropy energy. The spins change by 180° across the thickness § of the Bloch wall as in Fig-
ure 8.25. The contribution Uexchange from the exchange energy arises because it takes energy to
rotate one spin with respect to another. If the thickness § is large, then the angular change from
one spin to the next will be small, and the exchange energy contribution Ueychange Will also be
small. Thus, Uexchange 1S inversely proportional to 8. Ueychange i$ also directly proportional to Eex
which gauges the magnitude of this exchange energy; it costs E¢, to rotate the two spins 180° to
each other. Thus, Uexchange X Eex/8.

The anisotropy energy contribution Ussisoropy arises from having spins point away from the
easy direction. If the thickness § is large, there are more and more spin moments that are aligned
away from the easy direction, and the anisotropy energy contribution Usisoropy 1S also large.
Thus, Uanisorropy is proportional to 8, and also, obviously, to the anisotropy energy K that gauges
the magnitude of this energy. Thus, Usnisowropy ¢ K 8.

EXAMPLE 8.4
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Figure 8.26 The potential energy of a
domain wall depends on the exchange ”
and anisotropy energies. o Domain wall thickness &

Figure 8.26 shows the contributions of the exchange and anisotropy energies, Uexchange and
Uanisotropys tO the total Bloch wall energy as a function of wall thickness 8. It is clear that exchange
and anisotropy energies have opposite (or conflicting) requirements on the wall thickness.
There is, however, an optimum thickness &’ that minimizes the Bloch wall energy, that is, a
thickness that balances the requirements of exchange and anisotropy forces.

If the interatomic spacing is a, then there would be N = §/a atomic layers in the wall.
Since the spin moment angle changes by 180° across &, we can calculate the relative spin ori-
entations (180°/N) of adjacent atomic layers, and hence we can find the exact contributions of
exchange and anisotropy energies. We do not need the exact mathematics, but the final result is
that the potential energy U, per unit area of the wall is approximately

ECX

2a8

The first term on the right is the exchange energy contribution (proportional to E., /8), and the sec-
ond is the anisotropy energy contribution (proportional to X §); both have the features we discussed.
Show that the minimum energy occurs when the wall has the thickness

1/2
5 = (nZEex) !
2aK
Taking E.x ~ kT, where Tc is the Curie temperature, and for iron, K =~ 50 kJ m~3, and
a ~ 0.3 nm, estimate the thickness of a Bloch wall and its energy per unit area.

+ K3$

Uwall ~

SOLUTION
We can differentiate U,y with respect to §,
dUwall T 2 Eex
wall K
ds 2a8? +

and then set it to zero for § = &’ to find,
§ = (”2Ecx)1/2
“\ 24K
Since Te = 1043 K, Eox = kTc = (1.38 x 1072 JK~')(1043 K) = 1.4 x 10~ J, so that

5 — (7:2Ecx>'/2 B [ 7214 x 107)
“\ 24K ~ 12(0.3 x 10-9)(50, 000)

1/2
] =68x10%m or 68nm
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72 Eey B 72(1.4 x 10~2)
2a8’ T 2(0.3 x 10-°)(6.8 x 10-8)

= 0.007 J m~? or 7 mJ m~?

+ K&

and Uyy = + (50 x 10%)(6.8 x 10°%)

A better calculation gives 8’ and U, as 40 nm and 3 mJ m™2, respectively, about the same

order of magnitude.* The Bloch wall thickness is roughly 70 nm or §/a = 230 atomic layers. It
is left as an exercise to show that when § = &', the exchange and anisotropy energy contribu-
tions are equal.
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8.5.4 MAGNETOSTRICTION

If we were to strain a ferromagnetic crystal (by applying a suitable stress) along a cer-
. tain direction, we would change the. interatomic spacing not only along this direction
but also in other directions and hence change the exchange interactions between the
atomic spins. This would lead to a change in the magnetization properties of the crys-
tal. In the converse effect, the magnetization of the crystal generates strains or changes
in the physical dimensions of the crystal. For example, in very qualitative terms, when
an iron crystal is magnetized along the [111] direction by a strong field, the atomic
spins within domains are rotated from their easy directions toward the hard [111] di-
rection. These electron spin rotations involve changes in the electron charge distri-
butions around the atoms and therefore affect the interatomic bonding and hence the
interatomic spacing. When an iron crystal is placed in a magnetic field along an easy
direction [100], it gets longer along this direction but contracts in the transverse
directions [010] and [001], as depicted in Figure 8.27. The reverse is true for nickel.
The longitudinal strain A¢/¢ along the direction of magnetization is called the
magnetostrictive constant, denoted by A. The magnetostrictive constant depends on
the crystal direction and may be positive (extension) or negative (contraction). Further,
A depends on the applied field and can even change sign as the field is increased; for
example, A for iron along the [110] direction is initially positive and then, at higher
fields, becomes negative. When the crystal reaches saturation magnetization, A also
reaches saturation, called saturation magnetostriction strain )y, which is typically
10761075, Table 8.4 summarizes the A, values for Fe and Ni along the easy and hard
directions. The crystal lattice strain energy associated with magnetostriction is called
the magnetostrictive energy, which is typically less than the anisotropy energy.
Magnetostriction is responsible for the transformer hum noise one hears near
power transformers. As the core of a transformer is magnetized one way and then in the
opposite direction under an alternating voltage, the alternating changes in the longitu-
dinal strain vibrate the surrounding environment, air, oil, and so forth, and generate an
acoustic noise at twice the main frequency, or 120 Hz, and its harmonics. (Why?)
The magnetostrictive constant can be controlled by alloying metals. For example,
Asa along the easy direction for nickel is negative and for iron it is positive, but for the
alloy 85% Ni-15% Fe, it is zero. In certain magnetic materials, A can be quite large,

4 See, for example, D. Jiles, Introduction to Magnetism and Magnetic Materials, London, England: Chapman and
Hall, 1991.
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Original Fe crystal
------- {-----./ y [010]
; : T x[100]
Figure 8.27 Magnetostriction means that the : H : >
iron crystal in a magnetic field along x, an easy ! :
direction, elongates along x but contracts in the [Py T eer—.
transverse directions (in low fields). «—(+ 80 —>

greater than 10~*, which has opened up new areas of sensor applications based on
the magnetostriction effect. For example, it may be possible to develop torque sensors
for automotive steering applications by using Co-ferrite type magnetic materials®
(e.g., CoO-Fe,03 or similar compounds) that have Ay of the order of 1074,

8.5.5 DOMAIN WALL MOTION

The magnetization of a single ferromagnetic crystal involves the motions of domain
boundaries to allow the favorably oriented domains to grow at the expense of domains
with magnetizations directed away from the field (Figure 8.23). The motion of a do-
main wall in a crystal is affected by crystal imperfections and impurities and is not
smooth. For example, in a 90° Bloch wall, the magnetization changes direction by 90°
across the boundary. Due to magnetostriction (Figure 8.27), there is a change in the
distortion of the lattice across the 90° boundary, which leads to a complicated strain
and hence stress distribution around this boundary. We also know that crystal imper-
fections such as dislocations and point defects also have strain and stress distributions
around them. Domain walls and crystal imperfections therefore interact with each
other. Dislocations are line defects that have a substantial volume of strained lattice
around them. Figure 8.28 visualizes a dislocation with tensile and compressive strains
around it and a domain wall that has a tensile strain on the side of the dislocation. If
the wall gets close to the dislocation, the tensile and compressive strains cancel,
which results in an unstrained lattice and hence a lower strain energy. This energeti-
cally favorable arrangement keeps the domain boundary close to the dislocation. It
now takes greater magnetic field to snap away the boundary from the dislocation. Do-
main walls also interact with nonmagnetic impurities and inclusions. For example, an
inclusion that finds itself in a domain becomes magnetized and develops south and
north poles, as shown in Figure 8.29a. If the domain wall were to intersect the inclu-
sion and if there were to be two neighboring domains around the inclusion, as in Fig-
ure 8.29b, then the magnetostatic energy would be lowered—energetically a favorable
event. This reduction in magnetostatic potential energy means that it now takes greater
force to move the domain wall past the impurity, as if the wall were “pinned” by the
impurity.

The motion of a domain wall in a crystal is therefore not smooth but rather jerky.
The wall becomes pinned somewhere by a defect or an impurity and then needs a

| 5 See, for example, D. Jiles and C. C. H. Lo, Sensors and Actuators, A106, 3, 2003.
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Figure 8.28 Siress and sirain Figure 8.29 Interaction of a Bloch wall with a nonmagnetic
distributions around a dislocation and {no permanent magnetization) inclusion.
near a domain wall. (a) The inclusion becomes magnetized and there is magnetostatic
energy.
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(b) This arrangement has lower potential energy and is thus favorable.

greater applied field to break free. Once it snaps off, the domain wall is moved until it
is attracted by another type of imperfection, where it is held until the field increases
further to snap it away again. Each time the domain wall is snapped loose, lattice
vibrations are generated, which means loss of energy as heat. The whole domain wall
motion is nonreversible and involves energy losses as heat to the crystal.

8.5.6 POLYCRYSTALLINE MATERIALS AND THE M VERSUS H BEHAVIOR

The majority of the magnetic materials used in engineering are polycrystalline and
therefore have a microstructure that consists of many grains of various sizes and ori-
entations depending on the preparation and thermal history of the component. In an
unmagnetized polycrystalline sample, each crystal grain will possess domains, as de-
picted in Figure 8.30. The domain structure in each grain will depend on the size and
shape of the grain and, to some extent, on the magnetizations in neighboring grains.
Although very small grains, perhaps smaller than 0.1 pm, may be single domains, in
most cases the majority of the grains will have many domains. Overall, the structure
will possess no net magnetization, provided that it was not previously subjected to an
applied magnetic field. We can assume that the component was heated to a temperature
above the Curie point and then allowed to cool to room temperature without an ap-
plied field.

Suppose that we start applying a very small external magnetic field (u,H) along
some direction, which we can arbitrarily label as +x. The domain walls within vari-
ous grains begin to move small distances, and favorably oriented domains (those with
acomponent of M along +x) grow a little larger at the expense of those pointing away
from the field, as indicated by point a in Figure 8.31. The domain walls that are
pinned by imperfections tend to bow out. There is a very small but net magnetization
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Figure 8.30 Schematic illustration of magnetic
domains in the grains of an unmagnetized
polycrystalline iron sample.

Very small grains have single domains.

MAGNETIC PROPERTIES AND SUPERCONDUCTIVITY

Small grain with a single domain

— A grain with domains

X — s 4

H H H H
a b c d
Reversible Irreversible  Rotation Saturation
boundary boundary of M of M
motion motion
H

Figure 8.31 M versus H behavior of a previously unmagnetized polycrystalline iron specimen.

An example grain in the unmagnetized specimen is that at O.

(a) Under very small fields, the domain boundary motion is reversible.

(b) The boundary motions are irreversible and occur in sudden jerks.

(c) Nearly all the grains are single domains with saturation magnetizations in the easy directions.
(d) Magnetizations in individual grains have to be rotated to align with the field H.

(€} When the field is removed, the specimen returns along d'to e.

(f} To demagnetize the specimen, we have to apply a magnetizing field of H in the reverse direction.

along the field, as indicated by the Oa region in the magnetization versus magnetiz-
ing field (M versus H) behavior in Figure 8.31. As we increase the magnetizing field,
the domain motions extend larger distances, as shown for point b in Figure 8.31, and
walls encounter various obstacles such as crystal imperfections, impurities, second
phases, and so on, which tend to attract the walls and thereby hinder their motions. A
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domain wall that is stuck (or pinned) at an imperfection at a given field cannot move
until the field increases sufficiently to provide the necessary force to snap the wall
free, which then suddenly surges forward to the next obstacle. As a wall suddenly
snaps free and shoots forward to the next obstacle, essentially two causes lead to heat
generation. Sudden changes in the lattice distortion, due to magnetostriction, create
lattice waves that carry off some of the energy. Sudden changes in the magnetization
induce eddy currents that dissipate energy via Joule heating (domains have a finite
electrical resistance). These processes involve energy conversion to heat and are irre-
versible. Sudden jerks in the wall motions lead to small jumps in the magnetization of
the specimen as the magnetizing field is increased; the phenomenon is known as the
Barkhausen effect. If we could examine the magnetization precisely with a highly
sensitive instrument, we would see jumps in the M versus H behavior, as shown in the
inset in Figure 8.31.

As we increase the field, magnetization continues to increase by jerky domain wall
motions that enlarge domains with favorably oriented magnetizations and shrink away
those with magnetizations pointing away from the applied field. Eventually domain
wall motions leave each crystal grain with a single domain and magnetization in one of
the easy directions, as indicated by point ¢ in Figure 8.31. Although some grains would
be oriented to have the easy direction and hence M along the applied field, the magne-
tization in many grains will be pointing at some angle to H as shown for point ¢ in
Figure 8.31. From then until point d, the increase in the applied field forces the magne-
tization in a grain, such as that at point c to rotate toward the direction of H. Eventually
the applied field is sufficiently strong to align M along H, and the specimen reaches sat-
uration magnetization M, directed along H or +x, as at point d in Figure 8.31.

If we were to decrease and remove the magnetizing field, the magnetization in
each grain would rotate to align parallel with the nearest easy direction in that grain.
Further, in some grains, additional small domains may develop that reduce the magne-
tization within that grain, as indicated at point e in Figure 8.31. This process, from
point d to point e, leaves the specimen with a permanent magnetization, called the
remanent or residual magnetization and denoted by M,.

If we were now to apply a magnetizing field in the reverse direction —x, the mag-
netization of the specimen, still along +x, would decrease and eventually, at a suffi-
ciently large applied field M would be zero and the sample would have been totally
demagnetized. This is shown as point f in Figure 8.31. The magnetizing field H, re-
quired to totally demagnetize the sample is called the coercivity or the coercive field.
It represents the resistance of the sample to demagnetization. We should note that at
point fin Figure 8.31, the sample again has grains with many domains, which means
that during the demagnetization process, from point e to point f, new domains had to
be generated. The demagnetization process invariably involves the nucleation of vari-
ous domains at various crystal imperfections to cancel the overall magnetization. The
treatment of the nucleation of domains is beyond the scope of this book; we will
nonetheless, accept it as required process for the demagnetization of the crystal grains.

If we continue to increase the applied magnetic field along —x, as illustrated in
Figure 8.32a, the process from point f onward becomes similar to that described for
magnetization from point a to point d in Figure 8.31 along +x except that it is now
directed along —x. At point g, the sample reaches saturation magnetization along the
—x direction. The full M versus H behavior as the magnetizing field is cycled between
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{a) (b)

Figure 8.32
(a) A typical M versus H hysteresis curve.

[b) The corresponding B versus H hysteresis curve. The shaded area inside the hysteresis loop is the
energy loss per unit volume per cycle.

+x to —x has a closed loop shape, shown in Figure 8.32a, called the hysteresis loop.
We observe that in both +x and —x directions, the magnetization reaches saturation
Mg, when H reaches Hg,, and on removing the applied field, the specimen retains an
amount of permanent magnetization, represented by points e and 4 and denoted by M,.
The necessary applied field of magnitude H, that is needed to demagnetize the speci-
men is the coercivity (or coercive field), which is represented by points f and i. The
initial magnetization curve, Oabcd in Figure 8.31, which starts from an unmagnetized
state, is called the initial magnetization curve.

We can, of course, monitor the magnetic field B instead of M, as in Figure 8.32b,
where

B = u,M + u,H

which leads to a hysteresis loop in the B versus H behavior. The very slight increase in
B with H when M is in saturation is due to the permeability of free space (u,H). The
area enclosed within the B versus H hysteresis loop, shown as the hatched region in
Figure 8.32b, represents the energy dissipated per unit volume per cycle of applied
field variation.

Suppose we do not take a magnetic material to saturation but still subject the speci-
men to a cyclic applied field alternating between the +x and —x directions. Then the hys-
teresis loop would be different than that when the sample is taken all the way to saturation,
as shown in Figure 8.33. The magnetic field in the material does not reach Bgy (corre-
sponding to Mg,) but instead reaches some maximum value B,, when the magnetizing
field is H,, There is still a hysteresis effect because the magnetization and demagnetiza-
tion processes are nonreversible and do not retrace each other. The shape of the hysteresis
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B
3
L R s
A — Magnetized
B /  to saturation
m '
_H < 7" / r T H
h b Hm Hsat
/¢ Small cyclic
PP A applied field Figure 8.33 The B versus H hysteresis loop
depends on the magnitude of the applied field in
-B addition to the material and sample shape and size.

loop depends on the magnitude of the applied field in addition to the material and sample
shape and size. The area enclosed within the loop is still the energy dissipated per unit
volume per cycle of applied field oscillation. The hysteresis loop taken to saturation, as in
Figure 8.32a and b, is called the saturation (major) hysteresis loop. It is apparent from
Figure 8.33 that the remanence and coercivity exhibited by the sample depend on the B~-H
loop. The quoted values normally correspond to the saturation hysteresis loop.
Ferrimagnetic materials exhibit properties that closely resemble those of ferro-
magnetic materials. One can again identify distinct magnetic domains and domain
wall motions during magnetization and demagnetization that also lead to B—H hyste-
resis curves with the same characteristic parameters, namely, saturation magnetization
(M, and By, at Hgyy), remanence (M, and B,), coercivity (H,), hysteresis loss, and so on.

8.5.7 DEMAGNETIZATION

The B—H hysteresis curves, as in Figure 8.32b, that are commonly given for magnetic
materials represent B versus H behavior observed under repeated cycling. The applied
field intensity H is cycled back and forward between the —x and +x directions. If we
were to try and demagnetize a specimen with a remanent magnetization at point e in
Figure 8.34 by applying a reverse field intensity, then the magnetization would move
along from point e to point f. If at point f we were to suddenly switch off the applied
field, we would find that B does not actually remain zero but recovers along f to point
¢’ and attains some value B;. The main reason is that small domain wall motions are
reversible and as soon as the field is removed, there is some reversible domain wall
motion “bouncing back” the magnetization along f~e’. We can anticipate this recovery
and remove the field intensity at some point f' so that the sample recovers along 'O
and the magnetization ends up being zero. However, to remove the field intensity at
point f’, we need to know not only the exact B—H behavior but also the exact location
of point f’ (or the recovery behavior). The simplest method to demagnetize the sam-
ple is first to cycle H with ample magnitude to reach saturation and then to continue
cycling H but with a gradually decreasing magnitude, as depicted in Figure 8.35. As H
is cycled with a decreasing magnitude, the sample traces out smaller and smaller B—H
loops until the B—H loops are so small that they end up at the origin when H reaches

n7
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Figure 8.34 Removal of the demagnetizing
field at point f does not necessarily result in zero
magnetization as the sample recovers along f¢'.

Figure 8.35 A magnetized specimen can be
demagnetized by cycling the field intensity with a
decreasing magnitude, that is, tfracing out smaller
and smaller B-H loops until the origin is reached,
H=0.

zero. The demagnetization process in Figure 8.35 is commonly known as deperming.
Undesirable magnetization of various magnetic devices such as recording heads is typ-
ically removed by this deperming process (for example, a demagnetizing gun brought
close to a magnetized recording head implements deperming by applying a cycled H
with decreasing magnitude).

EXAMPLE 8.5

Work done
per unit
volume
during
magnetization

ENERGY DISSIPATED PER UNIT VOLUME AND THE HYSTERESIS LOOP  Consider a toroidal coil
with an iron core that is energized from a voltage supply through a rheostat, as shown in Fig-
ure 8.11. Suppose that by adjusting the rheostat we can adjust the current i supplied to the coil
and hence the magnetizing field H in the core material. H and i are simply related by Ampere’s
law. However, the magnetic field B in the core is determined by the B—H characteristics of the
core material. From electromagnetism (see Example 8.2), we know that the battery has to do
work dE,, per unit volume of core material to increase the magnetic field by dB, where

dE, = H dB

so that the total energy or work involved per unit volume in changing the magnetic field from
an initial value B to a final value B; in the core is

7]

Evol = H dB [822]

By
where the integration limits are determined by the initial and final magnetic fields.

Equation 8.22 corresponds to the area between the B—H curve and the B axis between B;
and B,. Suppose that we take the iron core in the toroid from point P on the hysteresis curve to
Q, as shown in Figure 8.36. This is a magnetization process for which energy is put into the
sample. The work done per unit volume from P to Q is the area PORS, shown as hatched. On
returning the sample to the same initial magnetization (same magnetic field B as we had at P),
taking it from Q to S, energy is returned from the core into the electric circuit. This energy per
unit volume is the area QRS, shown as gray, and is less than PORS during magnetization. The
difference is the energy dissipated in the sample as heat (moving domain walls and so on) and
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Figure 8.36 The area between the
B-H curve and the B axis is the energy
absorbed per unit volume in
magnetization or released during

> H  demagnetization.

corresponds to the hysteresis loop area PQS. Over one full cycle, the energy dissipated per unit
volume is the total hysteresis loop area.

The hysteresis loop and hence the energy dissipated per unit volume per cycle depend not
only on the core material but also on the magnitude of the magnetic field (B,,), as apparent in
Figure 8.33. For example, for magnetic steels used in transformer cores, the hysteresis power
loss P, per unit volume of core is empirically expressed in terms of the maximum magnetic field
B,, and the ac frequency f as®

P, = KfB" [8.23]

where K is a constant that depends on the core material (typically, K = 150.7), f is the ac fre-
quency (Hz), B,, is the maximum magnetic field (T) in the core (assumed to be in the range
0.1-1.5 T), and n = 1.6. According to Equation 8.23, the hysteresis loss can be decreased by
operating the transformer with a reduced magnetic field.

Hysteresis
power loss

perm

3
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8.6 SOFT AND HARD MAGNETIC MATERIALS

8.6.1 DEFINITIONS

Based on their B—H behavior, engineering materials are typically classified into soft and
hard magnetic materials. Their typical B—H hysteresis curves are shown in Figure 8.37.
Soft magnetic materials are easy to magnetize and demagnetize and hence require rel-
atively low magnetic field intensities. Put differently, their B—H loops are narrow, as
shown in Figure 8.37. The hysteresis loop has a small area, so the hysteresis power loss
per cycle is small. Soft magnetic materials are typically suitable for applications
where repeated cycles of magnetization and demagnetization are involved, as in elec-
tric motors, transformers, and inductors, where the magnetic field varies cyclically.
These applications also require low hysteresis losses, or small hysteresis loop area.
Electromagnetic relays that have to be turned on and off require the relay iron to be
magnetized and demagnetized and therefore need soft magnetic materials.

Hard magnetic materials, on the other hand, are difficult to magnetize and demag-
netize and hence require relatively large magnetic field intensities, as apparent in Fig-
ure 8.37. Their B—H curves are broad and almost rectangular. They possess relatively
large coercivities, which means that they need large applied fields to be demagnetized.
The coercive field for hard materials can be millions of times greater than those for soft

| % This is the power engineers Steinmetz equation for commercial magnetic steels. It has been applied not only to
silicon irons (Fe + few percent Si) but also to a wide range of magnetic materials.
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B

Hard

Soft

Figure 8.37 Soft and hard magnetic
materials. -B

magnetic materials. Their characteristics make hard magnetic materials useful as per-
manent magnets in a variety of applications. It is also clear that the magnetization can
be switched from one very persistent direction to another very persistent direction,
from + B, to — B,, by a suitably large magnetizing field intensity. As the coercivity is
strong, both the states + B, and — B, persist until a suitable (large) magnetic field in-
tensity switches the field from one direction to the other. It is apparent that hard mag-
netic materials can also be used in magnetic storage of digital data, where the states
+ B, and — B, can be made to represent 1 and O (or vice versa).

8.6.2 INITIAL AND MAXIMUM PERMEABILITY

It is useful to characterize the magnetization of a material by a relative permeability
Wy, since this simplifies magnetic calculations. For example, inductance calculations
become straightforward if one could represent the magnetic material by u, alone. But
it is clear from Figure 8.38a that

B
woH

is not even approximately constant because it depends on the applied field and the
magnetic history of the sample. Nonetheless, we still find it useful to specify a relative
permeability to compare various materials and even use it in various calculations. The
definition u, = B/(u,H) represents the slope of the straight line from the origin O to
the point P, as shown in Figure 8.38a. This is a maximum when the line becomes a tan-
gent to the B—H curve at P, as in the figure. Any other line from O to the B—H curve
that is not a tangent does not yield a maximum relative permeability (the mathematical
proof is left to the reader, though the argument is intuitively acceptable from the fig-
ure). The maximum relative permeability, as defined in Figure 8.38a, is denoted by
Urmax and serves as a useful magnetic parameter. The point P in Figure 8.38a that de-
fines the maximum permeability corresponds to what is called the “knee” of the B—-H
curve. Many transformers are designed to operate with the maximum magnetic field in
the core reaching this knee point. For pure iron, (i, max is less than 10, but for certain

Hy =
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Figure 8.38 Definitions of (a) maximum permeability and (b} initial permeability.

soft magnetic materials such as supermalloys (a nickel-iron alloy), the values of 1, max
can be as high as 10°.

Initial relative permeability, denoted as u,;, represents the initial slope of the ini-
tial B versus H curve as the material is first magnetized from an unmagnetized state, as
illustrated in Figure 8.38b. This definition is useful for soft magnetic materials that are
employed at very low magnetic fields (e.g., small signals in electronics and communi-
cations engineering). In practice, weak applied magnetic fields where u,; is useful are
typically less than 10~* T. In contrast, i, ma is useful when the magnetic field in the ma-
terial is not far removed from saturation. Initial relative permeability of a magnetically
soft material can vary by orders of magnitude. For example, w,; for iron is 150, whereas
for supernumetal-200, a commercial alloy of nickel and iron, it is about 2 x 10°.

8.7 SOFT MAGNETIC MATERIALS:
EXAMPLES AND USES

Table 8.5 identifies what properties are desirable in soft magnetic materials and also lists
some typical examples with various applications. An ideal soft magnetic material would
have zero coercivity (H,), a very large saturation magnetization (Bs,), zero remanent mag-
netization (B,), zero hysteresis loss, and very large p, max and w,;. A number of example
materials, from pure iron to ferrites, which are ferrimagnetic, are listed in Table 8.5. Pure
iron, although soft, is normally not used in electric machines (except in a few specific
relay-type applications) because its good conductivity allows large eddy currents to be in-
duced under varying fields. Induced eddy currents in the iron lead to Joule losses (RI?),
which are undesirable. The addition of a few percentages of silicon to iron (silicon—iron),
known typically as silicon—steels, increases the resistivity and hence reduces the eddy cur-
rent losses. Silicon—iron is widely used in power transformers and electric machinery.
The nickle—iron alloys with compositions around 77% Ni—23% Fe constitute an
important class of soft magnetic materials with low coercivity, low hysteresis losses, and
high permeabilities (u,; and (4, max ). High u,; makes these alloys particularly useful in
low magnetic field applications that are typically found in high-frequency work in
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Table 8.5 Selected soft magnetic materials and some typical values and applications

Magnetic o H, By B,
Material (T) (T) (T) ri Hr,max W, Typical Applications
Ideal soft 0 Large 0 Large Large 0 Transformer cores, inductors, electric

Iron (commercial)

machines, electromagnet cores,
relays, magnetic recording heads.

<10™* 22 <0.1 150 104 250 Large eddy current losses. Generally

grade, 0.2% not preferred in electric machinery
impurities) except in some specific applications
(e.g., some electromagnets and
relays).
Silicon iron <1074 20  05-1 103 10~ 30-100  Higher resistivity and hence lower eddy
(Fe: 2-4% Si) 4 x 10° current losses. Wide range of electric
machinery (e.g., transformers).
Supermalloy 2x 1077 07-08 <0.1 10° 108 <0.5  High permeability, low-loss electric
(79% Ni-15.5% devices, e.g., specialty transformers,
Fe-5% Mo-0.5% Mn) magnetic amplifiers.
78 Permalloy 5x 107 08 <01 8x10° 10’ <0.1  Low-loss electric devices, audio
(78.5% transformers, HF transformers,

Ni-21.5% Fe)
Glassy metals,
Fe-Si-B

Ferrites,
Mn-Zn ferrite

recording heads, filters.
2x 107¢ 16 <107 — 10° 20 Low-loss transformer cores.

1073 04 <001 2x10° 5x10° <001 HF low-loss applications. Low
conductivity ensures negligible
eddy current losses. HF transformers,
inductors (e.g., pot cores, E and U
cores), recording heads.

I NOTE: W, is the hysteresis loss, energy dissipated per unit volume per cycle in hysteresis losses, ] m~3 cycle™’, typically at Bp = 1T.

electronics (e.g., audio and wide-band transformers). They have found many engi-
neering uses in sensitive relays, pulse and wide-band transformers, current transform-
ers, magnetic recording heads, magnetic shielding, and so forth. Alloying iron with
nickel increases the resistivity and hence reduces eddy current losses. The magne-
tocrystalline anisotropy energy is least at these nickel compositions, which leads to
easier domain wall motions and hence smaller hysteresis losses. There are a number of
commercial nickel-iron alloys whose application depends on the exact composition
(which may also have a few percentages of Mo, Cu, or Cr) and the method of prepara-
tion (e.g., mechanical rolling). For example, supermalloy (79% Ni—-16% Fe-5% Co)
has u,; & 10°, compared with commercial grade iron, which has u,; less than 103%.
Amorphous magnetic metals, as the name implies, have no crystal structure (they
only have short-range order) and consequently possess no crystalline imperfections such
as grain boundaries and dislocations. They are prepared by rapid solidification of the melt
by using special techniques such as melt spinning (as described in Chapter 1). Typically
they are thin ribbons by virtue of their preparation method. Since they have no crystal
structure, they also have no magnetocrystalline anisotropy energy, which means that all
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directions are easy. The absence of magnetocrystalline anisotropy and usual crystalline
defects which normally impede domain wall motions, leads to low coercivities and hence
to soft magnetic properties. The coercivity, however, is not zero inasmuch as there is still
some magnetic anisotropy due to the directional nature of the strains frozen in the metal
during rapid solidification. By virtue of their disordered structure, these metallic glasses
also have higher resistivities and hence they have smaller eddy current losses. Although
they are ideally suited for various transformer and electric machinery applications, their
limited size and shape, at present, prevent their use in power applications.

Ferrites are ferrimagnetic materials that are typically oxides of mixed transition
metals, one of which is iron. For example, Mn ferrite is MnFe,O4 and MgZn ferrite is
Mn,_,Zn,Fe;04. They are normally insulators and therefore do not suffer from eddy
current losses. They are ideal as magnetic materials for high-frequency work where
eddy current losses would prevent the use of any material with a reasonable conductivity.
Although they can have high initial permeabilities and low losses, they do not possess
as large saturation magnetizations as ferromagnets, and further, their useful temperature
range (determined by the Curie temperature) is lower. There are many types of commer-
cial ferrites available depending on the application, tolerable losses, and the required
upper frequency of operation. MnZn ferrites, for example, have high initial permeabil-
ities (e.g., 2 x 10) but are only useful up to about 1 MHz, whereas NiZn ferrites have
lower initial permeability (e.g., 10?) but can be used up to 200 MHz. Generally, the ini-
tial permeability in the high-frequency region decreases with frequency.

Garnets are ferrimagnetic materials that are typically used at the highest frequencies
that cover the microwave range (1-300 GHz). The yttrium iron garnet, YIG, which is
Y;Fes012, is one of the simplest garnets with a very low hysteresis loss at microwave fre-
quencies. Garnets have excellent dielectric properties with high resistivities and hence
low losses. The main disadvantages are the low saturation magnetization, which is 0.18
T for YIG, and low Curie temperature, 280 °C for YIG. The compositions of garnets de-
pend on the properties required for the particular microwave application. For example,
Y2.1GdposFesO,; is a garnet that is used in X-band (8—12 GHz) three-port circulators
handling high microwave powers (e.g., peak power 200 kW and average power 200 W).
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AN INDUCTOR WITH A FERRITE CORE Consider a toroidal coil with a ferrite core. Suppose
that the coil has 200 turns and is used in HF work with small signals. The mean diameter of the
toroid is 2.5 cm and the core diameter is 0.5 cm. If the core is a MnZn ferrite, what is the
approximate inductance of the coil?

SOLUTION
The inductance L of a toroidal coil is given by

- “riu'oNzA
£

L
SO

0.005 \?’
(2 x 10°)(4m x 107" Hm™")(200)%x (T m)

L= =0.025H or 25 mH
(70.025 m)

EXAMPLE 8.6
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Had the core been air, the inductance would have been 1.26 x 10~ H or 12.6 uH. The main
assumption is that B is uniform in the core, and this will be only so if the diameter of the toroid
(2.5 cm) is much greater than the core diameter (0.5 cm). Here this ratio is 5 and the calculation
is only approximate.

8.8 HARD MAGNETIC MATERIALS:
EXAMPLES AND USES

An ideal hard magnetic material, as summarized in Table 8.6, has very large coerciv-
ity and remanent magnetic field. Further, since they are used as permanent magnets,
the energy stored per unit volume in the external magnetic field should be as large as
possible since this is the energy available to do work. This energy density (J m~>) in
the external field depends on the maximum value of the product BH in the second
quadrant of the B—H characteristics and is denoted as (BH)max. It corresponds to the
largest rectangular area that fits the B—H curve in the second quadrant, as shown in
Figure 8.39.

When the size of a ferromagnetic sample falls below a certain critical dimension,
of the order of 0.1 pm for cobalt, the whole sample becomes a single domain, as
depicted in Figure 8.40, because the cost of energy in generating a domain wall is too
high compared with the reduction in external magnetostatic energy. These small
particle-like pieces of magnets are called single domain fine particles. Their magnetic

Table 8.6 Hard magnetic materials and typical values

uoH, B, (BH)imax
Magnetic Material (T (¢)) (kJm™3) Examples and Uses
Ideal hard Large Large Large Permanent magnets in various
applications.
Alnico (Fe—Al-Ni-Co—Cu) 0.19 0.9 50 Wide range of permanent magnet
applications.
Alnico (Columnar) 0.075 1.35 60
Strontium ferrite 0.3-04 0.36-0.43 24-34 Starter motors, dc motors,
(anisotropic) loudspeakers, telephone
receivers, various toys.
Rare earth cobalt, e.g., 0.62-1.1 1.1 150-240 Servo motors, stepper motors,
Sm,Coyy (sintered) couplings, clutches, quality
audio headphones.
NdFeB magnets 0.9-1.0 1.0-1.2 200-275 Wide range of applications, small

motors (e.g., in hand tools),
walkman equipment, CD
motors, MRI body scanners,
computer applications.
Hard particles, 0.03 0.2 Audio and video tapes,
y-Fe 03 floppy disks.
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Figure 8.39 Hard magnetic materials Figure 8.40 A single domain fine
and (BH)max- particle.
+2Z
-y +y
Figure 8.41 A single domain elongated particle.
- Due to shape anisotropy, magnetization prefers to be along
the long axis as in (a). Work has to be done to change M
(a) (b) (c) from (a) to (b) to (c).

properties depend not only on the crystal structure of the particle but also on the
shape of the particle because different shapes give rise to different external magnetic
“fields. For a spherical iron particle, the magnetization M will be in an easy direction,
for example, along [100] taken along +z. To reverse the magnetization from +z to —z
by an applied field, we have to rotate the spins around past the hard direction, as shown
in Figure 8.40, since we cannot generate reverse domains (or move domain walls).
The rotation of magnetization involves substantial work due to the magnetocrystalline
anisotropic energy, and the result is high coercivity. The higher the magnetocrystalline
anisotropy energy, the greater the coercivity. The energy involved in creating a domain
wall increases with the magnetocrystalline anisotropy energy. The critical size below
which a particle becomes a single domain therefore increases with the crystalline
anisotropy. Barium ferrite crystals have the hexagonal structure and hence have a high
degree of magnetocrystalline anisotropy. Critical size for single domain barium ferrite
particles is about 1-1.5 pm, and the coercivity u,H, of small particles can be as high
as 0.3 T, compared with values 0.02-0.1 T in multidomain barium ferrite pieces.
Particles that are not spherical may even have higher coercivity as a result of shape
anisotropy. Consider an ellipsoid (elongated) fine particle, shown in Figure 8.41a. If

the magnetization M is along the long axis (along z), then the potential energy in the -

external magnetic field is less than if M were along the minor axis (along y), as com-
pared in Figure 8.41a and b. Thus, we have to do work to rotate M from the long to the
short axis, or from Figure 8.41a to b. An elongated fine particle therefore has its mag-
netization along its length, and the effect is called shape anisotropy. If we have to
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reverse the magnetization from +z to —z by applying a reverse field, then we can only
do so by rotating the magnetization, as shown in Figure 8.41a to c. M has to be rotated
around through the minor axis, and this involves substantial work. Thus the coercivity
is high. In general, the greater the elongation of the particle with respect to its width,
the higher the coercivity. Small spherical Fe—Cr—Co particles have a coercivity wu,H,
at most 0.02 T, but elongated and aligned particles can have a coercivity as high as
0.075 T due to shape anisotropy.

High coercivity magnets can be fabricated by having elongated fine particles dis-
persed by precipitation in a structure. Fine particles will be single domains. Alnico is a
popular permanent magnet material that is an alloy of the metals Al, Ni, Co, and Fe
(hence the name). Its microstructure consists of fine elongated Fe—Co rich particles,
called the o’-phase, dispersed in a matrix that is Ni—Al rich and called the a-phase. The
structure is obtained by an appropriate heat treatment that allows fine o’ particles to
precipitate out from a solid solution of the alloy. The o' particles are strongly magnetic,
whereas the a-phase matrix is weakly magnetic. When the heat treatment is carried out
in the presence of a strong applied magnetic field, the o’ particles that are formed have
their elongations (or lengths) and hence their magnetizations along the applied field.
The demagnetization process requires the rotations of the magnetizations in single do-
main elongated ¢’ particles, which is a difficult process (shape anisotropy), and hence
the coercivity is high. The main drawback of the Alnico magnet is that the alloy is
mechanically hard and brittle and cannot be shaped except by casting or sintering
before heat treatment. There are, however, other alloy permanent magnets that can be
machined.

A variety of permanent magnets are made by compacting high-coercivity particles
by using powder metallurgy (e.g., powder pressing or sintering). The particles are
magnetically hard because they are sufficiently small for each to be of single domain
or they possess substantial shape anisotropy (elongated particles may be ferromagnetic
alloys, e.g., Fe—Co, or various hard ferrites). These are generically called powdered
solid permanent magnets. An important class is the ceramic magnets that are made by
compacting barium ferrite, BaFe;,09, or strontium ferrite, SrFe;,0y, particles. The
barium ferrite has the hexagonal crystal structure with a large magnetocrystalline
anisotropy, which means that barium ferrite particles have high coercivity. The ce-
ramic magnet is typically formed by wet pressing ferrite powder in the presence of a
magnetizing field, which allows the easy directions of the particles to be aligned,
and then drying and carefully sintering the ceramic. They are used in many low-cost
applications.

Rare earth cobalt permanent magnets based on samarium—cobalt (Sm—Co) alloys
have very high (BH)n.x values and are widely used in many applications such as dc
motors, stepper and servo motors, traveling wave tubes, klystrons, and gyroscopes.
The intermetallic compound SmCos has a hexagonal crystal structure with high mag-
netocrystalline anisotropy and hence high coercivity. The SmCos powder is pressed in
the presence of an applied magnetic field to align the magnetizations of the particles.
This is followed by careful sintering to produce a solid powder magnet. The Sm»Co,5
magnets are more recent and have particularly high values of (BH)max up to about
240 kJ m~3. Sm,Co;s is actually a generic name and the alloy may contain other tran-
sition metals substituting for some of the Co atoms.
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One important aprlicoﬁon of permanent
magnets is in small dc motors. Toothbrushes
that operate from batteries use dc motors
with strong permanent magnets to get the
required forque to drive the brushes.

The more recent neodymium-—iron-boron, NdFeB, powdered solid magnets can
have very large (HB)ax Values up to about 275 kJ m™>. The tetragonal crystal struc-
ture has the easy direction along the long axis and possesses high magnetocrystalline
anisotropic energy. This means that we need a substantial amount of work to rotate the
magnetization around through the hard direction, and hence the coercivity is also high.
The main drawback is the lower Curie temperature, typically around 300 °C, whereas
for Alnico and rare earth cobalt magnets, the Curie temperatures are above 700 °C.
Another method of preparing NdFeB magnets is by the recrystallization of amorphous
NdFeB at an elevated temperature in an applied field. The grains in the recrystallized
structure are sufficiently small to be single domain grains and therefore possess high
coercivity.

(BH)max FOR A PERMANENT MAGNET  Consider the permanent magnet in Figure 8.42. There
is a small air gap of length £, where there is an external magnetic field that is available to do

work. For example, if we were to insert an appropriate coil in the gap and pass a current through

the coil, it would rotate as in a moving coil panel meter. Show that the magnetic energy per unit

volume stored in the gap is proportional to the maximum value of BH . How does (BH ), vary

with the magnetizing field? — ~

SOLUTION

Let ¢,, be the mean length of the magnet from one end to the other, as shown in Figure 8.42.
We assume that the cross-sectional area A is constant throughout. There are no windings
around the magnet and no current, / = 0. Ampere’s law for H involves integrating H along a
closed path or around the mean path length £,, 4+ £,. Suppose that H,, and H, are the magnetic
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Figure 8.42 A permanent magnet with a small air gap.

field intensities in the permanent magnet and in the gap, respectively. Then H d¢ integrated
around £, + £, is

fHde=Hme,,,+ngg=o

so that
J4
H, =-H, =z
eg
and hence
L
B, = —pu,—H, [8.24]
68

Equation 8.24 is a relationship between By in the gap and H,, in the magnet. In addition, we
have the B—H relationship for the magnetic material itself between the magnetic field B,, and
intensity H,, in the magnet, that is,

B, = f(Hy) [8.25]

The magnetic flux in the magnet and in the air gap must be continuous. Since we assumed
a uniform cross-sectional area, the continuity of flux across the air gap implies that B,, = B,.
Thus we need to equate Equation 8.24 to Equation 8.25. Equation 8.24 is a straight line with a
negative slope in a B, versus Hy, plot, as shown in Figure 8.43a. Equation 8.25 is, of course, the
B-H characteristics of the material. The two intersect at point P, as shown in Figure 8.43a,
where B, = B,, = B, and H,, = H,,.

‘We know that there is magnetic energy in the air gap given by

Emag = (Gap volume )(Magnetic energy density in the gap)

l 1 ’ ’ em
= “‘”(538”'8) = a“Wm”m( g, )

(At,)B, H,,

= N =

(Magnet volume) B, H,, [8.26]

Thus, the external magnetic energy depends on the magnet volume and the product of B,,
and H,, of the magnet characteristics at the operating point P. For a given magnet size, the mag-
netic energy in the gap is proportional to the rectangular area B, H,, OB, PH,, in Figure 8.43a,
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Figure 8.43

(a) Point P represents the operating point of the magnet and determines the magnetic field inside and
outside the magnet.

(b) Energy density in the gap is proportional to BH, and for a given geometry and size of gap, this is a
maximum at a particular magnetic field By, or Bj.

and we have to maximize this area for the best energy extraction. Figure 8.43b shows how the
product BH varies with B in a typical magnetic material. BH is maximum at (BH ) ,,,x, When the
magnetic field is B}, and the field intensity is H,:. We can appropriately choose the air-gap size
to operate at these values, in which case we will be only limited by the (BH ), available for that
magnetic material. It is clear that (BH ) . is a good figure of merit for comparing hard magnetic
materials. According to Table 8.6, we can extract four to five times more work from a rare earth
cobalt magnet than from an Alnico magnet of the same size if we were not limited by economics
and weight. It should be mentioned that Equation 8.26 is only approximate as it neglects all
fringe fields.
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8.9.1 ZERO RESISTANCE AND THE MEISSNER EFFECT

In 1911 Kamerlingh Onnes at the University of Leiden in Holland observed that
when a sample of mercury is cooled to below 4.2 K, its resistivity totally vanishes
and the material behaves as a superconductor, exhibiting no resistance to current
flow. Other experiments since then have shown that there are many such substances,
not simply metals, that exhibit superconductivity when cooled below a critical
temperature 7, that depends on the material. On the other hand, there are also many
conductors, including some with the highest conductivities such as silver, gold, and
copper, that do not exhibit superconductivity. The resistivity of these normal
conductors at low temperatures is limited by scattering from impurities and crystal
defects and saturates at a finite value determined by the residual resistivity. The two
distinctly different types of behavior are depicted in Figure 8.44. Between 1911 and
1986, many different metals and metal alloys had been studied, and the highest
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N Superconductor (e.g., Pb)
=
=1
4
3
=1
Normal metal
(e.g.,Ag)
Figure 8.44 A superconductor such as lead Presidual
evinces a transition to zero resistivity at a critical
temperature T (7.2 K for Pb). 0
A normal conductor such as silver exhibits residual 0 A Temperature, T
resistivity down to lowest temperatures. T, ’

recorded critical temperature was about 23 K in a niobium-germanium compound
(Nb3Ge) whose superconductivity was discovered in the early 1970s. In 1986 Bednorz
and Miiller, at IBM Research Laboratories in Ziirich, discovered that a copper
oxide-based ceramic-type compound La—Ba—Cu~O, which normally has high resis-
tivity, becomes superconducting when cooled below 35 K. Following this Nobel
prize-winning discovery, a variety of copper oxide—based compounds (called cuprate
ceramics) have been synthesized and studied. In 1987 it was found that yttrium bar-
ium copper oxide (Y-Ba—Cu-O) becomes superconducting at a critical temperature
of 95 K, which is above the boiling point of nitrogen (77 K). This discovery was par-
ticularly significant because liquid nitrogen is an inexpensive cryogent that is readily
liquified and easy to use compared with cryogent liquids that had to be used in the

Superconductivity, zero resistance below a certain critical
temperature, was discovered by a Dutch physicist, Heike
Kamerlingh Onnes, in 1911. Kamerlingh Onnes and one of his
graduate students found that the resistance of frozen mercury
simply vanished at 4.15 K; Kamerlingh Onnes won the Nobel
prize in 1913.

SOURCE: © Rijksmuseum voor de Geschiedenis der

thuurwetenscLoppen, courtesy AIP Emilio Segré Visual

Archives.
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John Bardeen, Leon N. Cooper, and John Robert Schrieffer, in Nobel prize ceremony
(1972). They received the Nobel prize for the explanation of superconductivity in terms
of Cooper pairs.

| SOURCE: AIP Emilio Segré Visual Archives.

"My belief is that the pairing condensation is what Mother Nature had in mind when she
created these fascinating high-T. systems.” Robert Schrieffer (1991)

past (liquid helium). At present the highest critical temperature for a superconductor
is around 130 K (—143 °C) for Hg—Ba—Ca—Cu-O. These superconductors with 7,
above ~30 K are now typically referred as high-T, superconductors. The quest for
a near-room-temperature superconductor goes on, with many scientists around the
world trying different materials, or synthesizing them, to raise 7, even higher. There
are already commercial devices utilizing high-7, superconductors, for example,
thin-film SQUIDs’ that can accurately measure very small magnetic fluxes, high-Q
filters, and resonant cavities in microwave communications.

The vanishing of resistivity is not the only characteristic of a superconductor. A
superconductor cannot be viewed simply as a substance that has infinite conductivity
below its critical temperature. A superconductor below its critical temperature expels
all the magnetic field from the bulk of the sample as if it were a perfectly diamagnetic
substance. This phenomenon is known as the Meissner effect. Suppose that we place
a superconducting material in a magnetic field above T,.. The magnetic field lines will
penetrate the sample, as we expect for any low u, medium. However, when the
superconductor is cooled below T, it rejects all the magnetic flux in the sample, as
depicted in Figure 8.45. The superconductor develops a magnetization M by devel-
oping surface currents, such that M and the applied field cancel everywhere inside

| 7SQUID is a superconducting quantum interference device that can detect very small magnetic fluxes.
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Figure 8.45 The Meissner effect.

A superconductor cooled below its critical temperature expels all magnetic field lines from
the bulk by setting up a surface current. A perfect conductor (o = 00) shows no Meissner
effect.

the sample. Put differently u,M is in the opposite direction to the applied field and
equal to it in magnitude. Thus, below T, a superconductor is a perfectly diamagnetic
substance (x,, = —1). This should be contrasted with the behavior of a perfect conduc-
tor, which only exhibits infinite conductivity, or p = 0, below T. If we place a perfect
conductor in a magnetic field and then cool it below T,, the magnetic field is not re-
jected. These two types of behavior are identified in Figure 8.45. If we switch off the
field, the field around the superconductor simply disappears. But switching off the field
means there is a decreasing applied field. This change in the field induces currents in the
perfect conductor by virtue of Faraday’s law of induction. These currents generate a
magnetic field that opposes the change (Lenz’s law); in other words, they generate a
field along the same direction as the applied field to reenforce the decreasing field. As
the current can be sustained (o = 0) without Joule dissipation, it keeps on flowing and
maintaining the magnetic field. The two final situations are shown in Figure 8.45 and
distinguish the Meissner effect, a distinct characteristic of a superconductor, from the
behavior of a perfect conductor (o = 0 only). The photograph showing the levitation of
a magnet above the surface of a superconductor (Figure 8.46) is the direct result of the
Meissner effect: the exclusion of the magnet’s magnetic fields from the interior of the
superconductor.

The transition from the normal state to the superconducting state as the temperature
falls below the critical temperature has similarities with phase transitions such as solid
to liquid or liquid to vapor changes. At the critical temperature, there is a sharp change
in the heat capacity as one would observe for any phase change. In the superconducting
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Magnet  Superconductor

above T,
Surface S Superconductor
below T,
currents
Figure 8.46

Left: A magnet over a superconductor becomes levitated. The superconductor is a perfect diamagnet which means that there
can be no magpnetic field inside the superconductor.

Right: Photograph of a magnet levitating above a superconductor immersed in liquid nitrogen (77 K). This is the Meissner
effect.
| SOURCE: Photo courtesy of Professor Paul C. W. Chu.

state, we cannot treat a conduction electron in isolation. The electrons behave collec-
tively and thereby impart the superconducting characteristics to the substance, as dis-
cussed later.

8.9.2 TyYPE I AND TYPE II SUPERCONDUCTORS

The superconductivity below the critical temperature has been observed to disappear
in the presence of an applied magnetic field exceeding a critical value denoted by B..
This critical field depends on the temperature and is a characteristic of the material.
Figure 8.47 shows the dependence of the critical field on the temperature. The criti-
cal field is maximum, B.(0), when T = 0 K (obtained by extrapolation®). As long as
the applied field is below B, at that temperature, the material is in the superconduct-
ing state, but when the field exceeds B,, the material reverts to the normal state. We
know that in the superconducting state, the applied magnetic field lines are expelled
from the sample and the phenomenon is called the Meissner effect. The external
field, in fact, does penetrate the sample from the surface into the bulk, but the mag-
nitude of this penetrating field decreases exponentially from the surface. If the field
at the surface of the sample is B,, then at a distance x from the surface, the field is

8 There is a third law to thermodynamics that is not as emphasized as the first two laws, which dominate all branches
of engineering. That is, one can never reach the absolute zero of temperature.
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Figure 8.49 Characteristics of Type | and Type Il superconductors. B = pu,H is the
applied field and M is the overall magnetization of the sample. Field inside the sample,
Binside = toH + oM, which is zero only for B < B, (Type I) and B < By (Type Il).

given by an exponential decay,

x
B(x) =B, exp(—- K)

where A is a “characteristic length” of penetration, called the penetration depth, and
depends on the temperature and T, (or the material). At the critical temperature, the
penetration length is infinite and any magnetic field can penetrate the sample and de-
stroy the superconducting state. Near absolute zero of temperature, however, typical
penetration depths are 10100 nm. Figure 8.48 shows the B, versus T behavior for
three example superconductors, tin, mercury, and lead.

Superconductors are classified into two types, called Type I and Type II, based on
their diamagnetic properties. In Type I superconductors, as the applied magnetic
field B increases, so does the opposing magnetization M until the field reaches the crit-
ical field B,, whereupon the superconductivity disappears. At that point, the perfect
diamagnetic behavior, the Meissner effect, is lost, as illustrated in Figure 8.49. A Type
I superconductor below B, is in the Meissner state, where it excludes all the magnetic
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flux from the interior of the sample. Above B, it is in the normal state, where the mag-
netic flux penetrates the sample as it would normally and the conductivity is finite.

In the case of Type II superconductors, the transition does not occur sharply from
the Meissner state to the normal state but goes through an intermediate phase in which
the applied field is able to pierce through certain local regions of the sample. As the
magnetic field increases, initially the sample behaves as a perfect diamagnet exhibit-
ing the Meissner effect and rejecting all the magnetic flux. When the applied field in-
creases beyond a critical field denoted as B, the lower critical field, the magnetic
flux lines are no longer totally expelled from the sample. The overall magnetization M
in the sample opposes the field, but its magnitude does not cancel the field everywhere.
As the field increases, M gets smaller and more flux lines pierce through the sample
until at B, the upper critical field, all field lines penetrate the sample and supercon-
ductivity disappears. This behavior is shown in Figure 8.49. Type II superconductors
therefore have two critical fields B.; and B,,.

When the applied field is between B, and B,,, the field lines pierce through the sam-
ple through tubular local regions, as pictured in Figure 8.50. The sample develops local
small cylindrical (filamentary) regions of normal state in a matrix of superconducting
state and the magnetic flux lines go though these filaments of local normal state, as
shown in Figure 8.50. The state between B,; and B, is called the mixed state (or vortex
state) because there are two states—normal and superconducting—mixed in the same
sample. The filaments of normal state have finite conductivity and a quantized amount
of flux through them. Each filament is a vortex of flux lines (hence the name vortex
state). It should be apparent that there should be currents circulating around the walls of
vortices. These circulating currents ensure that the magnetic flux through the supercon-
ducting matrix is zero. The sample overall has infinite conductivity due to the supercon-
ducting regions. Figure 8.51 shows the dependence of B.; and B, on the temperature and
identifies the regions of Meissner, mixed, and normal states. All engineering applica-
tions of superconductors invariably use Type II materials because B, is typically much
greater than B, found in Type I materials and, furthermore, the critical temperatures of
Type II materials are higher than those of Type I. Many superconductors, including the
recent high-7,. superconductors, are of Type II. Table 8.7 summarizes the characteristics
of selected Type I and Type II superconductors.
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Table 8.7 Examples of Type | and Type Il superconductors

Type 1 Sn Hg Ta v Pb Nb .
T. (K) 3.72 4.15 4.47 5.40 7.19 9.2
B.(T) 0.030 0.041 0.083 0.14 0.08 0.198
Y-Ba-Cu-O Bi-Sr-Ca-Cu-O
Type IT Nb3Sn Nb3Ge Ba,_,Br,CuQ,4 (YBa,Cu307) (Bi;Sr;Ca;Cuz0q0) Hg-Ba-Ca-Cu-O
T. (K) 18.05 232 30-35 93-95 122 130-135
B, (Tesla) 24.5 38 ~150 ~300
at0 K
J. (Acm™?) ~107 10%-107
at0K

| NOTE: Ciritical fields are close to absolute zero, obtained by extrapolation. Type | for pure, clean elements.

8.9.3 CriTiCAL CURRENT DENSITY

Another important characteristic feature of the superconducting state is that when the
current density through the sample exceeds a critical value J,, it is found that super-
conductivity disappears. This is not surprising since the current through the super-
conductor will itself generate a magnetic field and at sufficiently high current densities,
the magnetic field at the surface of the sample will exceed the critical field and extin-
guish superconductivity. This plausible direct relation between B, and J. is only true
for Type I superconductors, whereas in Type II superconductors, J. depends in a com-
plicated way on the interaction between the current and the flux vortices. New high-T,
superconductors have exceedingly high critical fields, as apparent in Table 8.7, that do
not seem to necessarily translate to high critical current densities. The critical current
density in Type II superconductors depends not only on the temperature and the
applied magnetic field but also on the preparation and hence the microstructure (e.g.,
polycrystallinity) of the superconductor material. Critical current densities in new
high-T, superconductors vary widely with preparation conditions. For example, in
Y-Ba-Cu-0, J, may be greater than 10’ A cm™2 in some carefully prepared thin films
and single crystals but around 10°-10% A cm~2 in some of the polycrystalline bulk
material (e.g., sintered bulk samples). In Nb3Sn, used in superconducting solenoid
magnets, on the other hand, J, is close to 10’ A cm™2 at near 0 K.

The critical current density is important in engineering because it limits the total cur-
rent that can be passed through a superconducting wire or a device. The limits of
superconductivity are therefore defined by the critical temperature T, critical magnetic
field B, (or B,»), and critical current density J.. These constitute a surface in a three-
dimensional plot, as shown in Figure 8.52, which separates the superconducting state
from the normal state. Any operating point (7}, By, J;) inside this surface is in the
superconducting state. When the cuprate ceramic superconductors were first discovered,
their J, values were too low to allow immediate significant applications in engineering.
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Figure 8.52 The critical surface for
a niobium~tin alloy, which is a Type Il
superconductor.

Their synthesis over the last 10 years has advanced to a level that we can now benefit
from large critical currents and fields. Over the same temperature range, ceramic
cuprate superconductors now easily outperform the traditional superconductors. There
are already a number of applications of these high-T, superconductors in the commer-
cial market.
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SUPERCONDUCTING SOLENOIDS® Superconducting solenoid magnets can produce very
large magnetic fields up to ~15 T or so, whereas the magnetic fields available from a ferro-
magnetic core solenoid is limited to ~2 T. High field magnets used in magnetic resonance
imaging are based on superconducting solenoids wound using a superconducting wire. They
are operated around 4 K with expensive liquid helium as the cryogen. These superconducting
wires are typically Nb3Sn or NbTi alloy filaments embedded in a copper matrix. A very large
current, several hundred amperes, is passed through the solenoid winding to obtain the neces-
sary high magnetic fields. There is, of course, no Joule heating once the current is flowing in
the superconducting state. The main problem is the large forces and hence stresses in the coil
due to large currents. Two wires carrying currents in the opposite direction repel each other,
and the force is proportional to I2. Thus the magnetic forces between the wires of the coil give
rise to outward radial forces trying to “blow open” the solenoid, as depicted in Figure 8.53.
The forces between neighboring wires are attractive and hence give rise to compressional
forces squeezing the solenoid axially. The solenoid has to have a proper mechanical support
structure around it to prevent mechanical fracture and failure due to large forces between the
windings. The copper matrix serves as mechanical support to cushion against the stresses as
well as a good thermal conductor in the event that superconductivity is inadvertently lost dur-
ing operation.

Suppose that we have a superconducting solenoid that is 10 cm in diameter and 1 m in
length and has 500 turns of Nb3Sn wire, whose critical field B, at 4.2 K (liquid He temperature)
is about 20 T and critical current density J. is 3 x 10% A cm~2. What is the current necessary to
set up a field of 5 T at the center of a solenoid? What is the approximate energy stored in the

9 Designing a superconducting solencid is by no means trivial, and the enthusiastic student is referred to a very
readable description given by James D. Doss, Engineer’s Guide fo High Temperature Superconductivity, New York:
John Wiley & Sons, 1989, ch. 4. Photographs and descriptions of caiasrropﬁic failure in high field solenoids can be
found in an article by G. Broebinger, A. Passner, and J. Bevk, “Building World-Record Magnets” in Scientific
American, June 1995, pp. 59-66.

EXAMPLE 8.8
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Figure 8.53 A solenoid carrying a current experiences radial forces pushing the coil apart and axial
forces compressing the coil.

Superconducting electromagnets used on
MRI. Operates with liquid He, providing a
magnetic field 0.5-1.5T.
SOURCE: Courtesy of IGC Magnet
Business group.

solenoid? Assume that the critical current density decreases linearly with the applied field. Fur-
ther, assume also that the field across the diameter of the solenoid is approximately uniform
(field at the windings is the same as that at the center).

SOLUTION

We can assume that we have a long solenoid, that is, length (100 cm) > diameter (10 cm). The
field at the center of a long solenoid is given by

_ KoNI
)

B

so the current necessary for B = 5 T is
_ Bt )

woN (47 x 10-7)(500)
As the coil is 1 m and there are 500 turns, the coil wire radius must be 1 mm. If all the cross

section of the wire were of superconducting medium, then the corresponding current density
would be

I = 7958 A or 7.96 kA

Joie = — = —————— =25x%x 10° Am™ or 2.5 x 10° A cm™2

The actual current density through the superconductors will be greater than this as the
wires are embedded in a metal matrix. Suppose that 20 percent by cross-sectional area (and
hence as volume percentage) is the superconductor; then the actual current density through the
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superconductor is

=1.25 x 10° A cm™?

Jos
Jsuper = (;Vu;

We now need the critical current density J; at a field of 5 T. Assuming J.. decreases linearly
with the applied field and vanishes when B = B,, we can find J/, from linear interpolation

B.— B ¢, 20T-5T
= (3x10°A Lo
5 - Gx om0 T

The actual current density Jsuper through the superconductors is less than this critical value
J!. We can assume that the superconducting solenoid will operate “safely” (with all other de-
signs correctly implemented). It should be emphasized that accurate and reliable calculations
will involve the actual J.~B.~T surface, as in Figure 8.52 for the given material.

Since the field in the solenoid is B = 5 T, assuming that this is uniform along the axis and
the core is air, the energy density or energy per unit volume is

B? 52 6« 3
Eyq = . = 2an x 107 =995 x 10°Jm

J =, =225 x 10° A cm™?

so the total energy
E = E, [volume] = (9.95 x 10° Jm™>)[(1 m)(xx 0.05% m?)]
=781 x 10*] or 78.1K)

If all this energy can be converted to electrical work, it would light a 100 W lamp for
13 min (and if converted to mechanical work, it could lift an 8 ton truck by 1 m).
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Although superconductivity was discovered in 1911, the understanding of its origin
did not emerge until 1957 when Bardeen, Cooper, and Schrieffer formulated the theory
(called the BCS theory) in terms of quantum mechanics. The quantum mechanical
treatment is certainly beyond the scope of this book, but one can nonetheless grasp an
intuitive understanding, as follows. The cardinal idea is that, at sufficiently low tem-
peratures, two oppositely spinning and oppositely traveling electrons can attract each
other indirectly through the deformation of the crystal lattice of positive metal ions.
The idea is illustrated pictorially in Figure 8.54. The electron 1 distorts the lattice

< 9 2 Figure 8.54 A pictorial and intuitive

view of an indirect attraction between
two oppositely traveling electrons via
lattice distortion and vibration.

Lattice vibration
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around it and changes its vibrations as it passes through this region. Random thermal
vibrations of the lattice at low temperatures are not strong enough to randomize this in-
duced lattice distortion and vibration. The vibrations of this distorted region now look
differently to another electron, 2, passing by. This second electron feels a “net” attrac-
tive force due to the slight displacements of positive metal ions from their equilibrium
positions. The two electrons interact indirectly through the deformations and vibra-
tions of the lattice of positive ions. This indirect interaction at sufficiently low temper-
atures is able to overcome the mutual Coulombic repulsion between the electrons and
hence bind the two electrons to each other. The two electrons are called a Cooper pair.
The intuitive diagram in Figure 8.54, of course, does not even convey the intuition why
the spins of the electrons should be opposite. The requirement of opposite spins comes
from the formal quantum mechanical theory. The net spin of the Cooper pair is zero
and their net linear momentum is also zero. There is a further significance to the pair-
ing of electron spins in the Cooper pair. As a quasi-particle, or an entity, the Cooper
pair has no net spin and hence the Cooper pairs do not obey the Fermi—Dirac statistics.!
They can therefore all “condense” to the lowest energy state and possess one single
wavefunction that can describe the whole collection of Cooper pairs. All the paired
electrons are described collectively by a single coherent wavefunction ¥, which ex-
tends over the whole sample. A crystal imperfection cannot simply scatter a single
Cooper pair because all the pairs behave as a single entity—like a “huge molecule.”
Scattering one pair involves scattering all, which is simply not possible. An analogy
may help. One can scatter an individual football player running on his own. But if all
the team members got together and moved forward arm in arm as a rigid line, then the
scattering of any one now is impossible, as the rest will hold him in the line and con-
tinue to move forward (don’t forget, it’s only an analogy!). Superconductivity is said
to be a macroscopic manifestation of quantum mechanics. The BCS theory has had
good success with traditional superconductors, but there seems to be some doubt about
its applicability to the new high-T, superconductors. There are a number of high-T,
superconductivity theories at present, and the interested student can easily find addi-
tional reading on the subject.

ADDITIONAL TOPICS
8.11 ENERGY BAND DIAGRAMS AND MAGNETISM

8.11.1 PAULI SPIN PARAMAGNETISM

Consider a paramagnetic metal such as sodium. The paramagnetism arises from the
alignment of the spins of conduction electrons with the applied magnetic field. A con-
duction electron in a metal has an extended wave function and does not orbit any par-
ticular metal ion. The conduction electron’s magnetic moment arises from the electron
spin alone, and py, is in the opposite direction to the spin; py, can be either up

| 191n fact, the Cooper pair without a net spin behaves as if is were a boson particle.
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