Quantum Mechanics I

PHY 3103

Dr Mohammad Abdur Rashid

Jashore University of Science and Technology **Dr Rashid, 2022**

The configuration or state of a quantum object is completely specified by the wave function.

The wave function of a particle, at a particular time, contains all the information that anybody at that time can have about the particle (e.g. position, momentum, and energy).

The wave function, in general, is not a real quantity, but a complex-valued functions of space and time.

In one dimension the wave function is denoted by $\Psi(x,t)$, while in three dimension it is $\Psi(x, y, z, t)$.

How do we get the wave function?

The wave function is derived by solving Schrödinger equation.

The Schrödinger equation of the particle moving in the potential $V(x)$ is written as

$$
-\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x)}{\partial x^2} + V(x)\Psi(x) = E\Psi(x)
$$

The wave function itself has no physical interpretation. It is not measurable.

The square of the absolute value of the wave function has a physical interpretation.

In one dimension, we interpret $|\Psi(x,t)|^2$ as a probability density, a probability per unit length of finding the particle at a time *t* at position x.

6

Since the wave function, in general, is a complex function we write

$$
\boxed{|\Psi(x,t)|^2 = \Psi^*(x,t)\Psi(x,t)}
$$

$$
|\Psi(x,t)|^2 dx = \begin{cases} \text{probability of finding the particle} \\ \text{between } x \text{ and } (x+dx), \text{ at time } t \end{cases}
$$

A (fictitious) schematic diagram showing $|\Psi(x)|^2$ against distance from nucleus, in arbitrary unit.

There is a 100% probability that the electron is somewhere - in other words a probability of 1.

The normalization condition of the wave function

$$
\int_{-\infty}^{+\infty} |\Psi(x,t)|^2 \mathrm{d}x = 1
$$

The wave function must be single valued and continuous.

Single-valued wave function:
$$
\Psi(x) = x^2
$$

Multi-valued wave function: $\Psi(x) = \pm \sqrt{x}$

This is an acceptable wave function. It is single valued and continuous.

This is an unacceptable wave function. $\Psi(x,0)$ does not have a unique single value at $x = 0$. The wave function is not continuous.

- 1. In order to avoid infinite probabilities, Ψ must be finite everywhere.
- **2.** In order to avoid multiple values of the probability, Ψ must be single valued.
- **3.** For finite potentials, Ψ and $\frac{\partial \Psi}{\partial x}$ must be continuous. This is required because the second-order derivative term in the wave equation must be single valued. (There are exceptions to this rule when V is infinite.)
- **4.** In order to normalize the wave functions, Ψ must approach zero as x approaches $\pm \infty$.

$$
\Psi(x) = A(\sqrt{3}\cos x + \sin x)
$$

= $2A\left(\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x\right)$
= $2A\left(\cos(\pi/6)\cos x + \sin(\pi/6)\sin x\right)$
= $A'\cos(x - \pi/6)$

$$
\Psi(x) = A \ln(1 + 3x)
$$

$$
x = -1/3
$$

$$
\Psi(-1/3)=A\ln 0=\infty
$$

$$
\Psi(x) = \begin{cases} A(a^2 - x^2), & \text{if } -a \le x \le +a \\ 0, & \text{otherwise} \end{cases}
$$

$$
\Psi(x) = \begin{cases} A \ln(1+x), & \text{if } 0 \le x \le 10\\ 0, & \text{otherwise} \end{cases}
$$

$$
\Psi(x) = \begin{cases}\nA \ln(1+x), & \text{if } 0 \le x \le 10 \\
0, & \text{otherwise}\n\end{cases}
$$
\n
$$
\begin{array}{c}\n\text{where } x \le 10 \\
\text{where } x \ge 10 \\
\text{where } x \ge 10\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{where } x \ge 10 \\
\text{where } x \ge 10\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{where } x \ge 10 \\
\text{where } x \ge 10\n\end{array}
$$

 15

In quantum mechanics, the expectation value is the average of repeated measurements on an ensemble of identically prepared systems.

$$
\langle x \rangle = \frac{\int_{-\infty}^{\infty} x \Psi^*(x, t) \Psi(x, t) dx}{\int_{-\infty}^{\infty} \Psi^*(x, t) \Psi(x, t) dx}
$$

Problem 1.4 At time $t = 0$ a particle is represented by the wave function

$$
\Psi(x, 0) = \begin{cases}\nA - x, & \text{if } 0 \le x \le a, \\
A \frac{(b - x)}{(b - a)}, & \text{if } a \le x \le b, \\
0, & \text{otherwise,} \n\end{cases}
$$

where A , a , and b are constants.

- (a) Normalize Ψ (that is, find A, in terms of a and b).
- (b) Sketch $\Psi(x, 0)$, as a function of x.
- (c) Where is the particle most likely to be found, at $t = 0$?
- (d) What is the probability of finding the particle to the left of a ? Check your result in the limiting cases $b = a$ and $b = 2a$.

$$
1 = \frac{|A|^2}{a^2} \int_0^a x^2 dx + \frac{|A|^2}{(b-a)^2} \int_a^b (b-x)^2 dx
$$

= $|A|^2 \left\{ \frac{1}{a^2} \left(\frac{x^3}{3} \right) \Big|_0^a + \frac{1}{(b-a)^2} \left(-\frac{(b-x)^3}{3} \right) \Big|_a^b \right\}$

$$
=|A|^2\left[\frac{a}{3}+\frac{b-a}{3}\right]=|A|^2\frac{b}{3}
$$

$$
A=\sqrt{\frac{3}{b}}.
$$

 (a)

Jashore University of Science and Technology ²⁸ **Dr Rashid, 2022**

(d)
$$
P = \int_0^a |\Psi|^2 dx = \frac{|A|^2}{a^2} \int_0^a x^2 dx = |A|^2 \frac{a}{3} = \boxed{\frac{a}{b}}.
$$

$$
\begin{cases}\nP = 1 & \text{if } b = a, \checkmark \\
P = 1/2 & \text{if } b = 2a. \checkmark\n\end{cases}
$$

Jashore University of Science and Technology ²⁹ **Dr Rashid, 2022**

(e) $\langle x \rangle = \int x |\Psi|^2 dx = |A|^2 \left\{ \frac{1}{a^2} \int_0^a x^3 dx + \frac{1}{(b-a)^2} \int_a^b x(b-x)^2 dx \right\}$ $= \frac{3}{b} \left\{ \frac{1}{a^2} \left(\frac{x^4}{4} \right) \Big|_0^a + \frac{1}{(b-a)^2} \left(b^2 \frac{x^2}{2} - 2b \frac{x^3}{3} + \frac{x^4}{4} \right) \Big|_a^b \right\}$ $= \frac{3}{4b(b-a)^2}\left[a^2(b-a)^2+2b^4-8b^4/3+b^4-2a^2b^2+8a^3b/3-a^4\right]$ $= \frac{3}{4b(b-a)^2}\left(\frac{b^4}{3}-a^2b^2+\frac{2}{3}a^3b\right)=\frac{1}{4(b-a)^2}(b^3-3a^2b+2a^3)$ $=\left|\frac{2a+b}{4}\right|$

Heisenberg's Uncertainty Principle

Heisenberg's Uncertainty Principle

It is impossible to specify simultaneously, with arbitrary precision, both the momentum and the position of a particle.

$$
\Delta x \, \Delta p_x \geq \frac{\hbar}{2}
$$

$$
\hbar = \frac{h}{2\pi} = 1.055 \times 10^{-34} \text{ J s}
$$

The uncertainty principle restricts the precision with which complementary observables may be specified and measured simultaneously.

$$
\Delta x \propto \frac{1}{\Delta p_x}
$$

Calculate the momentum uncertainty of (a) a tennis ball constrained to be in a fence enclosure of length 35 m surrounding the court and (b) an electron within the smallest diameter of a hydrogen atom.

Solution (a) If we insert the uncertainty of the location of the tennis ball, $\Delta x = (35 \text{ m})/2$, into $\Delta p_x \Delta x \ge \hbar/2$, we have

$$
\Delta p_x \ge \frac{1}{2} \frac{\hbar}{\Delta x} = \frac{1.05 \times 10^{-34} \text{ J} \cdot \text{s}}{2(35 \text{ m})/2} = 3 \times 10^{-36} \text{ kg} \cdot \text{m/s}
$$

Uncertainty Principle

(b) The diameter of the hydrogen atom in its lowest energy state (smallest radius) is $2a_0$. We arbitrarily take the uncertainty Δx to be half the diameter or equal to the radius, $\Delta x = a_0$.

$$
\Delta x = a_0 = 0.529 \times 10^{-10} \text{ m}
$$

$$
\Delta p_x \ge \frac{1}{2} \frac{\hbar}{\Delta x} = \frac{1.05 \times 10^{-34} \text{ J} \cdot \text{s}}{2(0.529 \times 10^{-10} \text{ m})}
$$

$$
= 1 \times 10^{-24} \text{ kg} \cdot \text{m/s}
$$

This may seem like a small momentum, but for an electron with a mass of about 10^{-30} kg, it corresponds to a speed of about 10^6 m/s, which is not insignificant!

Heisenberg's Uncertainty Principle

$$
\Delta x \Delta p_x \geq \frac{\hbar}{2}, \qquad \Delta y \Delta p_y \geq \frac{\hbar}{2}, \qquad \Delta z \Delta p_z \geq \frac{\hbar}{2}.
$$

Constraints of the uncertainty principle

Energy-Time Uncertainty Principle

This relation states that if we make two measurements of the energy of a system and if these measurements are separated by a time interval π the measured energies will differ by an mount \overrightarrow{f} which can in no way be smaller than \vec{h} / \wedge f If the time interval between the two measurements is large, the energy difference will be small.

We must emphasize that the uncertainties are intrinsic. They are not due to our inability to construct better measuring equipment. No matter how well we can measure, no matter how accurate an instrument we build, and no matter how long we measure, we can never do any better than the uncertainty principle allows.

A particle is represented (at time $t = 0$) by the wave function

$$
\Psi(x,0) = \begin{cases} A(a^2 - x^2). & \text{if } -a \le x \le +a, \\ 0, & \text{otherwise.} \end{cases}
$$

(a) Determine the normalization constant \vec{A} .

- (b) Calculate the expectation values of x, x^2 , p, and p^2 .
- (c) Find Δx and Δp .

Is their product consistent with the uncertainty principle?

The Postulates of Quantum Mechanics

Postulate 1. The state of a quantum-mechanical system is completely specified by a wavefunction Ψ that depends on the coordinates and time. The square of this function $\Psi^*\Psi$ gives the probability density for finding the system with a specified set of coordinate values.

Postulate 2. Every observable in quantum mechanics is represented by a linear, hermitian operator.

A linear operator is one which satisfies the identity $\hat{A}(c_1\psi_1 + c_2\psi_2) = c_1\hat{A}\psi_1 + c_2\hat{A}\psi_2$

Postulate 3. In any measurement of an observable A , associated with an operator \hat{A} , the only possible results are the eigenvalues a_n , which satisfy an eigenvalue equation

$$
\hat{A}\psi_n = a_n \,\psi_n
$$

Postulate 4. For a system in a state described by a normalized wave function Ψ , the average or expectation value of the observable corresponding to A is given by

$$
\langle A\rangle=\int\,\Psi^*\,\hat{A}\,\Psi\,d\tau
$$

Postulate 5. The wavefunction of a system evolves in time in accordance with the time-dependent Schrödinger equation

$$
i\hbar \frac{\partial \Psi}{\partial t} = \hat{H} \, \Psi
$$

Postulate 1. The state of a quantum-mechanical system is completely specified by a wavefunction Ψ that depends on the coordinates and time. The square of this function $\Psi^*\Psi$ gives the probability density for finding the system with a specified set of coordinate values.

> The wavefunction must be single-valued, finite and continuous.

$$
\int \Psi^* \Psi \, d\tau = 1
$$

Normalization

$$
\int_{-\infty}^{+\infty} |\Psi(x,t)|^2 dx = 1
$$

Suppose we have normalized the wave function at time $t = 0$. Will it remain normalized as time goes on?

Let us calculate

$$
\frac{d}{dt} \int_{-\infty}^{+\infty} |\Psi(x,t)|^2 dx = \int_{-\infty}^{+\infty} \frac{\partial}{\partial t} |\Psi(x,t)|^2 dx
$$

By the product rule,

$$
\frac{\partial}{\partial t}|\Psi|^2=\frac{\partial}{\partial t}(\Psi^*\Psi)=\Psi^*\frac{\partial \Psi}{\partial t}+\frac{\partial \Psi^*}{\partial t}\Psi.
$$

Schrödinger equation says

$$
\frac{\partial \Psi}{\partial t} = \frac{i\hbar}{2m} \frac{\partial^2 \Psi}{\partial x^2} - \frac{i}{\hbar} V \Psi.
$$

$$
\frac{\partial}{\partial t}|\Psi|^2 = \frac{i\hbar}{2m}\left(\Psi^*\frac{\partial^2\Psi}{\partial x^2} - \frac{\partial^2\Psi^*}{\partial x^2}\Psi\right) = \frac{\partial}{\partial x}\left[\frac{i\hbar}{2m}\left(\Psi^*\frac{\partial\Psi}{\partial x} - \frac{\partial\Psi^*}{\partial x}\Psi\right)\right].
$$

$$
\frac{d}{dt}\int_{-\infty}^{+\infty}|\Psi(x,t)|^2\,dx=\frac{i\hbar}{2m}\left(\Psi^*\frac{\partial\Psi}{\partial x}-\frac{\partial\Psi^*}{\partial x}\Psi\right)\Big|_{-\infty}^{+\infty}.
$$

But $\Psi(x, t)$ must go to zero as x goes to (\pm) infinity

$$
\frac{d}{dt} \int_{-\infty}^{+\infty} |\Psi(x, t)|^2 dx = 0
$$

Time-dependent Schrödinger wave equation

$$
i\hbar \frac{\partial \Psi(x,\,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,\,t)}{\partial x^2} + V \Psi(x,\,t)
$$

Time-independent Schrödinger wave equation

$$
-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x)
$$

