Quantum Mechanics I PHY 3103

Dr Mohammad Abdur Rashid

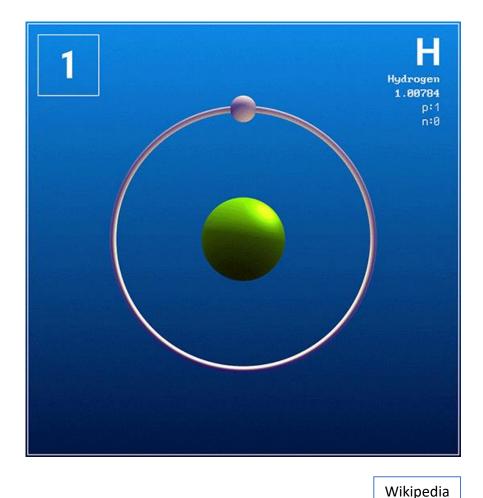
Dr Rashid, 2022

The Hydrogen Like Atom

Dr Mohammad Abdur Rashid

Jashore University of Science and Technology

Hydrogen atom



ParticlePositionMomentumElectron \mathbf{r}_1 \mathbf{p}_1 Proton \mathbf{r}_2 \mathbf{p}_2

$$[(\hat{\mathbf{r}}_1)_i, \ (\hat{\mathbf{p}}_1)_j] = i\hbar\delta_{ij}$$
$$[(\hat{\mathbf{r}}_2)_i, \ (\hat{\mathbf{p}}_2)_j] = i\hbar\delta_{ij}$$

A hydrogen atom or a hydrogen like atom (He⁺, Li²⁺, Be⁺³, etc.) consists of an atomic nucleus of charge Ze and an electron of charge -e. Their mutual interaction is given by the Coulomb potential

$$V(|\mathbf{r}_1 - \mathbf{r}_2|) = -\frac{1}{4\pi\epsilon_0} \frac{Ze^2}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

where $\mathbf{r}_1 = \mathbf{r}_1(x_1, y_1, z_1)$ and $\mathbf{r}_2 = \mathbf{r}_2(x_2, y_2, z_2)$ are the electron and nucleus position vectors, respectively.

The Schrödinger equation

The time-independent Schrödinger equation for the system is given by

$$\left\{-\frac{\hbar^2}{2m_1}\nabla_1^2 - \frac{\hbar^2}{2m_2}\nabla_2^2 + V(|\mathbf{r}_1 - \mathbf{r}_2|)\right\}\Psi(\mathbf{r}_1, \mathbf{r}_2) = E_{\text{tot}}\Psi(\mathbf{r}_1, \mathbf{r}_2),$$

where m_1 and m_2 are the masses of electron and nucleus.

$$\nabla_i^2 = \frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2}; \qquad i = 1, 2$$

Wave function

Particle	Position	Momentum
Electron	\mathbf{r}_1	\mathbf{p}_1
Proton	\mathbf{r}_2	p ₂

Wave function: $\Psi(\mathbf{r}_1, \mathbf{r}_2)$

Normalization: $\int \Psi^*(\mathbf{r}_1, \, \mathbf{r}_2) \Psi(\mathbf{r}_1, \, \mathbf{r}_2) \, \mathrm{d}^3 r_1 \, \mathrm{d}^3 r_2 = 1$

Separation of the Center of Mass Motion

The transformation from coordinates $(\mathbf{r}_1, \mathbf{r}_2)$ to coordinates (\mathbf{R}, \mathbf{r}) is given by introducing the relative coordinate

$$\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$$

and the vector

$$\mathbf{R} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m_1 + m_2}$$

which determines the position of the centre of mass system.

Change of variables

$$\Psi(\mathbf{r}_1,\mathbf{r}_2)=\Psi(\mathbf{R},\mathbf{r})$$

$$\frac{\partial \Psi}{\partial x_1} = \frac{\partial X}{\partial x_1} \cdot \frac{\partial \Psi}{\partial X} + \frac{\partial x}{\partial x_1} \cdot \frac{\partial \Psi}{\partial x} = \frac{\mu}{m_2} \frac{\partial \Psi}{\partial X} + \frac{\partial \Psi}{\partial x}$$

where μ is the reduced mass defined as

$$\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2} = \frac{m_1 + m_2}{m_1 m_2}.$$

Change of variables in 3D

$$\Psi(\mathbf{r}_1,\mathbf{r}_2)=\Psi(\mathbf{R},\mathbf{r})$$

$$\nabla_1 = \frac{\mu}{m_2} \nabla_R + \nabla \qquad \qquad \nabla_2 = \frac{\mu}{m_1} \nabla_R - \nabla$$

The kinetic energy operators

$$\frac{\hbar^2}{2m_1}\nabla_1^2 + \frac{\hbar^2}{2m_2}\nabla_2^2 = \frac{\hbar^2}{2M}\nabla_R^2 + \frac{\hbar^2}{2\mu}\nabla^2$$

where $M = m_1 + m_2$ is the total mass of the system.

Since **R** and **r** are independent to each other the wave function $\Psi(\mathbf{R}, \mathbf{r})$ can be separated into a product of functions of the centre of mass coordinate **R** and of relative coordinate **r** as $\Psi(\mathbf{R}, \mathbf{r}) = \Phi(\mathbf{R})\psi(\mathbf{r})$. With this the Schrödinger equation can be written as

$$\left\{-\frac{\hbar^2}{2M}\nabla_R^2 - \frac{\hbar^2}{2\mu}\nabla^2 + V(r)\right\}\Phi(\mathbf{R})\psi(\mathbf{r}) = E_{\rm tot}\Phi(\mathbf{R})\psi(\mathbf{r})$$

Momentum operators corresponding to \mathbf{r} and \mathbf{R}

$$\nabla_1 = \frac{\mu}{m_2} \nabla_R + \nabla$$

$$\hat{\mathbf{p}}_1 = \frac{\mu}{m2}\hat{\mathbf{P}} + \hat{\mathbf{p}}$$

$$\nabla_2 = \frac{\mu}{m_1} \nabla_R - \nabla$$

$$\hat{\mathbf{p}} = -i\hbar\nabla$$

$$\hat{\mathbf{p}}_2 = \frac{\mu}{m1}\hat{\mathbf{P}} - \hat{\mathbf{p}}$$

Momentum operators corresponding to \mathbf{r} and \mathbf{R}

$$\hat{\mathbf{p}}_1 = \frac{\mu}{m2}\hat{\mathbf{P}} + \hat{\mathbf{p}}$$

$$\hat{\mathbf{p}}_2 = \frac{\mu}{m1}\hat{\mathbf{P}} - \hat{\mathbf{p}}$$

$$\mathbf{p} = \mu \left(\frac{\mathbf{p}_1}{m_1} - \frac{\mathbf{p}_2}{m_2} \right) = \frac{m_2}{M} \mathbf{p}_1 - \frac{m_1}{M} \mathbf{p}_2,$$
$$\mathbf{P} = \mathbf{p}_1 + \mathbf{p}_2.$$

Momentum operators corresponding to \mathbf{r} and \mathbf{R}

$$\hat{\mathbf{p}}_1 = \frac{\mu}{m2}\hat{\mathbf{P}} + \hat{\mathbf{p}}$$

$$\hat{\mathbf{p}}_2 = \frac{\mu}{m1}\hat{\mathbf{P}} - \hat{\mathbf{p}}$$

Canonical variables

$$[(\hat{\mathbf{r}}_1)_i, \ (\hat{\mathbf{p}}_1)_j] = i\hbar\delta_{ij}$$
$$[(\hat{\mathbf{r}}_2)_i, \ (\hat{\mathbf{p}}_2)_j] = i\hbar\delta_{ij}$$

$$\begin{bmatrix} \hat{\mathbf{r}}_i, \ \hat{\mathbf{p}}_j \end{bmatrix} = i\hbar\delta_{ij}, \\ \begin{bmatrix} \hat{\mathbf{R}}_i, \ \hat{\mathbf{P}}_j \end{bmatrix} = i\hbar\delta_{ij}.$$

$$\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$$
$$\mathbf{R} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m_1 + m_2}$$

$$\mathbf{p} = \mu \left(\frac{\mathbf{p}_1}{m_1} - \frac{\mathbf{p}_2}{m_2} \right)$$
$$\mathbf{P} = \mathbf{p}_1 + \mathbf{p}_2.$$

Canonical variables

Change of variables in 3D

$$\Psi(\mathbf{r}_1,\mathbf{r}_2)=\Psi(\mathbf{R},\mathbf{r})$$

$$\nabla_1 = \frac{\mu}{m_2} \nabla_R + \nabla \qquad \qquad \nabla_2 = \frac{\mu}{m_1} \nabla_R - \nabla$$

The kinetic energy operators

$$\frac{\hbar^2}{2m_1}\nabla_1^2 + \frac{\hbar^2}{2m_2}\nabla_2^2 = \frac{\hbar^2}{2M}\nabla_R^2 + \frac{\hbar^2}{2\mu}\nabla^2$$

where $M = m_1 + m_2$ is the total mass of the system.

The Schrödinger equation in new variables

$$\left\{-\frac{\hbar^2}{2M}\nabla_R^2 - \frac{\hbar^2}{2\mu}\nabla^2 + V(r)\right\}\Phi(\mathbf{R})\psi(\mathbf{r}) = E_{\rm tot}\Phi(\mathbf{R})\psi(\mathbf{r})$$

$$-\frac{\hbar^2}{2M}\psi(\mathbf{r})\nabla_R^2 \Phi(\mathbf{R}) + \Phi(\mathbf{R}) \left\{-\frac{\hbar^2}{2\mu}\nabla^2 + V(r)\right\}\psi(\mathbf{r}) = E_{\text{tot}}\Phi(\mathbf{R})\psi(\mathbf{r})$$

$$-\frac{\hbar^2}{2M}\frac{1}{\Phi(\mathbf{R})}\nabla_R^2 \Phi(\mathbf{R}) + \frac{1}{\psi(\mathbf{r})} \left\{-\frac{\hbar^2}{2\mu}\nabla^2 + V(r)\right\}\psi(\mathbf{r}) = E_{\text{tot}}.$$

Two separate Schrödinger equations

Thus, we have the following two separate equations

$$-\frac{\hbar^2}{2M}\nabla_R^2 \Phi(\mathbf{R}) = E_{\rm CM}\Phi(\mathbf{R})$$

$$\left\{-\frac{\hbar^2}{2\mu}\nabla^2 + V(r)\right\}\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

with the condition $E_{\text{tot}} = E_{\text{CM}} + E$.

$$V(r) = -\frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r}.$$

The center of mass equation

$$-\frac{\hbar^2}{2M}\nabla_R^2 \Phi(\mathbf{R}) = E_{\rm CM}\Phi(\mathbf{R})$$

The solution to this kind of equation has the form

$$\Phi(\mathbf{R}) = (2\pi)^{-3/2} e^{i\mathbf{k}\cdot\mathbf{R}}$$

where **k** is the wave vector associated with the center of mass. The constant $E_{\rm CM} = \hbar^2 k^2 / (2M)$ gives the kinetic energy of the center of mass in the laboratory system (the total mass Mis located at the origin of the center of mass coordinate system).

The Hamiltonian in spherical polar coordinates

$$\begin{split} H &= -\frac{\hbar^2}{2\mu} \nabla^2 + V(r) \\ &= -\frac{\hbar^2}{2\mu} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right] + V(r) \\ &= -\frac{\hbar^2}{2\mu} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) - \frac{\mathbf{L}^2}{\hbar^2 r^2} \right] + V(r), \end{split}$$

where L^2 is the square of the magnitude of the orbital angular momentum and defined as

$$\mathbf{L}^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right].$$

The time-independent Schrödinger equation

$$\left\{-\frac{\hbar^2}{2\mu}\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{\mathbf{L}^2}{2\mu r^2} + V(r)\right\}\psi(\mathbf{r}) = E\psi(\mathbf{r}).$$

In order to simplify the solution of this equation we notice that \mathbf{L}^2 do not operate on the radial variable r. Since the spherical harmonics $Y_{lm}(\theta, \phi)$ are eigenfunctions of \mathbf{L}^2 we can look for solution of the Schrödinger equation having the separable form

$$\psi(\mathbf{r}) = \psi(r, \theta, \psi) = R_l(r) Y_{lm}(\theta, \phi)$$

where $R_l(r)$ is the radial function which remains to be found.

Spherical harmonics $Y_{lm}(\theta, \phi)$

$$\mathbf{L}^2 Y_{lm}(\theta,\phi) = \hbar^2 l(l+1) Y_{lm}(\theta,\phi)$$

$$Y_{lm}(\theta,\phi) = (-1)^m \sqrt{\left(\frac{2l+1}{4\pi}\right) \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\phi}, \qquad (m \ge 0).$$

Here $P_l^m(\cos\theta)$ is the associated Legendre functions. m < 0, we use

$$Y_{l,m}(\theta,\phi) = (-1)^m [Y_{l,-m}(\theta,\phi)]^*.$$

$$\int_0^{2\pi} \mathrm{d}\phi \int_0^{\pi} \mathrm{d}\theta \,\sin\theta \, Y_{l'm'}^*(\theta,\phi) \, Y_{lm}(\theta,\phi) = (Y_{l'm'}^*, \, Y_{lm}) = \delta_{l'l} \, \delta_{m'm}.$$

Solution of the Radial Equation

$$\mathbf{L}^2 Y_{lm}(\theta,\phi) = \hbar^2 l(l+1) Y_{lm}(\theta,\phi)$$

$$\left\{-\frac{\hbar^2}{2\mu}\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{\hbar^2 l(l+1)}{2\mu r^2} + V(r)\right\}R_l(r) = ER_l(r)$$

$$\frac{d^2 R_l(r)}{dr^2} + \frac{2}{r} \frac{dR_l(r)}{dr} + \left[\frac{2\mu}{\hbar^2} E - \frac{l(l+1)}{r^2} + \frac{2\mu}{\hbar^2} \left(\frac{Ze^2}{4\pi\epsilon_0}\right) \frac{1}{r}\right] R_l(r) = 0$$

Asymptotic solution of the Radial Equation

Asymptotic solution: $r \to \infty$

$$\frac{d^2 R_l(r)}{dr^2} \approx -\frac{2\mu E}{\hbar^2} R_l(r) = \frac{2\mu |E|}{\hbar^2} R_l(r)$$

having noted that the energy E is negative for bound states.

$$R_l(r) = Ae^{-\sqrt{2\mu|E|/\hbar^2} r} + Be^{\sqrt{2\mu|E|/\hbar^2} r}$$

where A and B are constants to be determined.

Asymptotic solution of the Radial Equation

$$R_l(r) = Ae^{-\sqrt{2\mu|E|/\hbar^2} r} + Be^{\sqrt{2\mu|E|/\hbar^2} r}$$

Choose the negative exponential (B = 0) and set

$$E = -\frac{\mu Z^2 e^4}{8\epsilon_0^2 h^2} = -\frac{\mu Z^2 e^4}{2(4\pi\epsilon_0)^2 \hbar^2},$$

the ground state energy in the Bohr theory (in center of mass system), we obtain

$$R_l(r) = Ae^{-Zr/a_{\mu}}$$

Asymptotic solution of the Radial Equation

$$R_l(r) = Ae^{-Zr/a_\mu}$$

where a_{μ} is the modified Bohr radius

$$a_{\mu} = \frac{(4\pi\epsilon_0)\hbar^2}{\mu e^2} = \frac{\epsilon h^2}{\pi \mu e^2} = \frac{m_1}{\mu} \frac{\epsilon h^2}{\pi m_1 e^2} = \frac{m_1}{\mu} a_0$$

with a_0 being the Bohr radius.

$$\int_0^\infty [R_{10}(r)]^2 r^2 dr = 1$$

$$\int_0^\infty r^n e^{-\alpha r} dr = n! \alpha^{-(n+1)}$$

Normalized radial function

$$R_{10}(r) = 2\left(\frac{Z}{a_{\mu}}\right)^{3/2} e^{-Zr/a_{\mu}}$$

$$\psi(\mathbf{r}) = \psi(r, \theta, \psi) = R_l(r)Y_{lm}(\theta, \phi)$$

$$\mathbf{L}^2 Y_{lm}(\theta,\phi) = \hbar^2 l(l+1) Y_{lm}(\theta,\phi)$$

The wave function ψ_{1s}

$$R_{10}(r) = 2\left(\frac{Z}{a_{\mu}}\right)^{3/2} e^{-Zr/a_{\mu}}$$

$$Y_{00}(\theta,\phi) = 1/\sqrt{4\pi}$$

$$\psi_{100}(r,\theta,\phi) = \psi_{100}(r) = \psi_{1s}(r) = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_{\mu}}\right)^{3/2} e^{-Zr/a_{\mu}}$$

The wave function of the hydrogen atom in ground state is found by setting Z = 1 as

$$\psi_{1s}(r) = \left(\frac{1}{\pi^{1/3}a_{\mu}}\right)^{3/2} e^{-r/a_{\mu}}$$

General solution of the radial wave function

The normalized radial function for the bound state of hydrogenic atom has a rather complicated form which we give without proof:

$$R_{nl}(r) = -\left\{ \left(\frac{2Z}{na_{\mu}}\right)^3 \frac{(n-l-1)!}{2n[(n+1)!]^3} \right\}^{1/2} e^{-\rho/2} \rho^l L_{n+l}^{2l+1}(\rho)$$

with

$$\rho = \frac{2Z}{na_{\mu}}r, \qquad \qquad a_{\mu} = \frac{(4\pi\epsilon_0)\hbar^2}{\mu e^2}.$$

Here L^{α}_{β} is an associated Laguerre polynomial.

Radial eigenfunctions of hydrogenic atom

$$R_{10}(r) = 2\left(\frac{Z}{a_{\mu}}\right)^{3/2} e^{-Zr/a_{\mu}}$$

$$R_{20}(r) = 2\left(\frac{Z}{2a_{\mu}}\right)^{3/2} \left(1 - \frac{Zr}{2a_{\mu}}\right) e^{-Zr/2a_{\mu}}$$

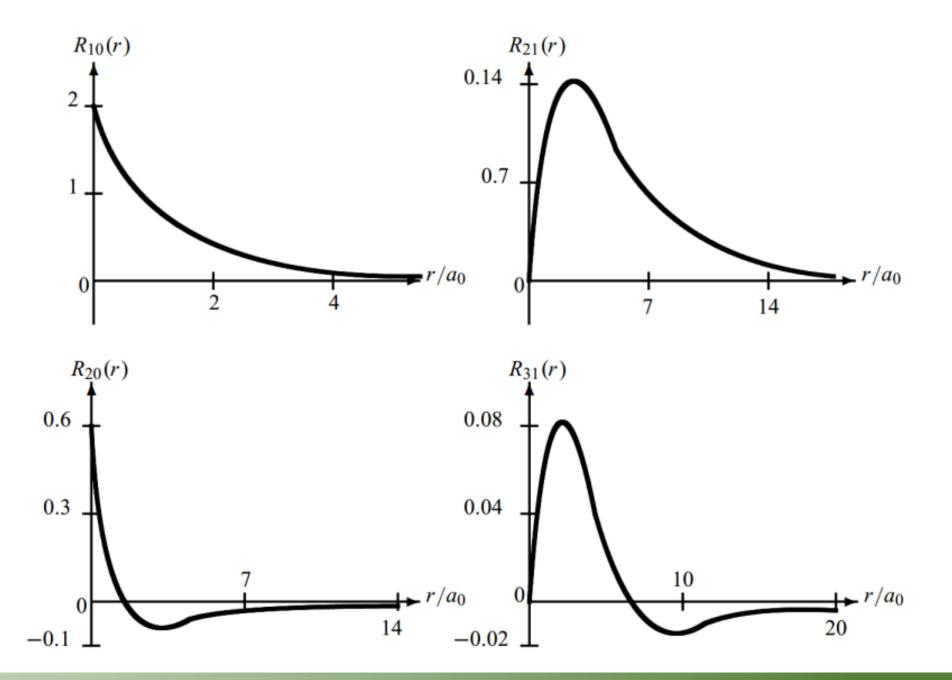
$$R_{21}(r) = \frac{1}{\sqrt{3}} \left(\frac{Z}{2a_{\mu}}\right)^{3/2} \left(\frac{Zr}{a_{\mu}}\right) e^{-Zr/2a_{\mu}}$$

Radial eigenfunctions of hydrogenic atom

$$R_{30}(r) = 2\left(\frac{Z}{3a_{\mu}}\right)^{3/2} \left(1 - \frac{2Zr}{3a_{\mu}} + \frac{2Z^{2}r^{2}}{27a_{\mu}^{2}}\right) e^{-Zr/3a_{\mu}}$$

$$R_{31}(r) = \frac{4\sqrt{2}}{9} \left(\frac{Z}{3a_{\mu}}\right)^{3/2} \left(1 - \frac{Zr}{6a_{\mu}}\right) \left(\frac{Zr}{a_{\mu}}\right) e^{-Zr/3a_{\mu}}$$

$$R_{32}(r) = \frac{4}{27\sqrt{10}} \left(\frac{Z}{3a_{\mu}}\right)^{3/2} \left(\frac{Zr}{a_{\mu}}\right)^{2} e^{-Zr/3a_{\mu}}$$



The solutions of the hydrogenic Schrödinger equation in spherical polar coordinates can now be written in full

$$\psi_{nlm}(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$$

where n = 1, 2, 3, ... is the principle quantum number, l = 0, 1, 2, ..., n-1 is the orbital angular momentum quantum number and $m = 0, \pm 1, \pm 2 ... \pm l$ is the magnetic quantum number.

