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The Hydrogenic Atom

A hydrogen atom or a hydrogen like atom (He™, Li*t, Be™s,
etc.) consists of an atomic nucleus of charge Ze and an electron
of charge —e. Their mutual interaction is given by the Coulomb
potential
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where ry = ri(x1,y1,21) and ro = ro(x9, Yo, 22) are the electron
and nucleus position vectors, respectively.




The Schrodinger equation

The time-independent Schrodinger equation for the system is
given by
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where m; and ms are the masses of electron and nucleus.
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Wave function

Electron

Proton I, P>

Wave function: ¥(ry, ry)

Normalization: /\If* (r1, T2)¥(ry, T3) d°r; d°ry = 1




Separation of the Center of Mass Motion

The transformation from coordinates (r; , ry) to coordinates
(R, r) is given by introducing the relative coordinate
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and the vector
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which determines the position of the centre of mass system.




Change of variables
U(ry,ry) = Y(R,r)
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where p is the reduced mass defined as
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Change of variables in 3D

U(ry,ry) = Y(R,r)

V,= XV, +V Vo= 2 Vp—V
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The Kinetic energy operators
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where M = m; + mo is the total mass of the system.
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The Schrodinger equation In new variables

Since R and r are independent to each other the wave tunc-
tion W(R,r) can be separated into a product of functions of
the centre of mass coordinate R and of relative coordinate r as
U(R,r) = ®(R)y(r). With this the Schrodinger equation

can be written as
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Momentum operators corresponding to r and R
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Momentum operators corresponding to r and R

pi =P+ pr = P —p
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Momentum operators corresponding to r and R
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Canonical variables

(T1)s; (f’l)g = 110y T, Dj] = thoy;,
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Canonical variables




Change of variables in 3D

U(ry,ry) = Y(R,r)

V,= XV, +V Vo= 2 Vp—V

mo m

The Kinetic energy operators
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where M = m; + mo is the total mass of the system.
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The Schrodinger equation In new variables

{—%V% - %vz + V(T)} O(R)Y(r) = Eyoi®(R)(r)
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Two separate Schrodinger equations

Thus, we have the following two separate equations
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The center of mass equation
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The solution to this kind of equation has the form
P(R) = (2%)‘3/ 2 gt R

where k is the wave vector associated with the center of mass.
The constant Ecyy = h?k?/(2M) gives the kinetic energy of
the center of mass in the laboratory system (the total mass M
is located at the origin of the center of mass coordinate system).




The Hamiltonian in spherical polar coordinates

H=—-—V"+V(r)
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where L? is the square of the magnitude of the orbital angular
momentum and defined as
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The time-independent Schrodinger equation

{ o (H%) S V(’r)}w(r):Ew(r).
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In order to simplify the solution of this equation we notice that
L? do not operate on the radial variable r. Since the spherical
harmonics Y}, (0, ¢) are eigenfunctions of L? we can look for
solution of the Schrodinger equation having the separable form

Y(r) = (r,0,v) = Ri(r)Yim (0, ¢)

where R;(r) is the radial function which remains to be found.




Spherical harmonics Y;,, (6, @)

L*Yim(6,0) = R*I(1 + 1)Yim(6, 0)
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Here P"(cosf) is the associated Legendre functions. m < 0, we use
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Solution of the Radial Equation

L*Yim(6,0) = R*I(1 + 1)Yim(6, 0)
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Asymptotic solution of the Radial Equation
Asymptotic solution: r — oo
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having noted that the energy FE is negative for bound states.
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where A and B are constants to be determined.




Asymptotic solution of the Radial Equation

R(r) = Ae—\/?;uJIEI/J'i2 Ty Be,\/%uvlff’l/ﬁz r
Choose the negative exponential (B = 0) and set
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the ground state energy in the Bohr theory (in center of mass
system), we obtain

Ri(r) = Ae2r/an




Asymptotic solution of the Radial Equation
Ri(r) = Ae=2r/an
where a, 1s the modified Bohr radius

(dmeg)h®  €h®  my  €h? my

a p— p— p— p— —ao
K e’ e’ [ Tm. e’ v

with ag being the Bohr radius.
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Normalized radial function
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Y(r) = (r,0,v) = Ri(r)Yim (0, ¢)
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The wave function Y
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The wave function of the hydrogen atom in ground state Is found by

setting Z=1as . 3/2
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General solution of the radial wave function

The normalized radial function for the bound state of hydrogenic
atom has a rather complicated form which we give without proof:
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Here L3 is an associated Laguerre polynomial.




Radial eigenfunctions of hydrogenic atom
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Radial eigenfunctions of hydrogenic atom
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The hydrogenic wave function

The solutions of the hydrogenic Schrodinger equation in spherical
polar coordinates can now be written in full

Ynim (1,0, 9) = Ry (r)Yim(6, )

where n = 1,2,3,... is the principle quantum number, [ =
0,1,2,...,n—11is the orbital angular momentum quantum num-
ber and m = 0,£1,+£2... & [ is the magnetic quantum number.




