Bachelor of Science with Honours in Physics Course no.: PHY 3103 | Course title: Quantum Mechanics I 1st semester of 3rd year, Academic session: 2023–2024

Supplementary Practice Questions

- 1. Is $\psi(x) = Axe^{-x^2}$ an acceptable wavefunction in quantum mechanics? Justify your answer and normalize it if valid.
- 2. Is the following function an acceptable wavefunction in quantum mechanics? Justify your answer, and normalize it if valid.

$$\psi(x) = \begin{cases} A\sin(\pi x), & \text{if } 0 \le x \le 1\\ 0, & \text{otherwise} \end{cases}$$

- 3. Show that eigenfunctions of a Hermitian operator corresponding to different eigenvalues are orthogonal.
- 4. Show that two operators \hat{A} and \hat{B} must commute in order to have a complete set of simultaneous eigenfunctions.
- **5.** Show that: (a) $(\hat{A} + \hat{B})^{\dagger} = \hat{A}^{\dagger} + \hat{B}^{\dagger}$, (b) $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$.
- 6. The operator for the z-component of angular momentum in spherical coordinates is given by: $\hat{L}_z = -i\hbar \frac{\partial}{\partial \phi}$, where ϕ is the azimuthal angle. Suppose a wave function depends on ϕ as $\psi(\phi) = e^{im\phi}$, where m is a constant. (a) Show that $\psi(\phi)$ is an eigenfunction of \hat{L}_z . (b) Find the corresponding eigenvalue of \hat{L}_z . (c) What condition must m satisfy for $\psi(\phi)$ to be single-valued and physically acceptable?
- 7. Given the wave function $\psi(x) = Ae^{-\alpha x^2}$, where A and α are constants, calculate the expectation values $\langle x \rangle$ and $\langle p \rangle$.
- 8. Calculate the expectation value of position, $\langle x \rangle$, for the following wave functions and interpret the physical meaning of the result.

$$\psi(x) = \frac{1}{\sqrt{2a}}, -a < x < a \text{ and zero elsewhere.}$$

9. Calculate the expectation value of position, $\langle x \rangle$, for the following wave functions and interpret the physical meaning of the result.

$$\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right), \quad 0 < x < a \text{ and zero elsewhere.}$$

10. Consider the operator $\hat{A} = -i\hbar \frac{d}{dx}$. (a) Write down the eigenvalue equation for \hat{A} . (b) Find the eigenfunctions $\psi_a(x)$ and corresponding eigenvalues a. (c) Discuss briefly the normalization of the eigenfunctions.

1