EEE 2105 Electrical Engineering Materials

Elementary Materials Science Concepts

Dr. Mohammad Abdur Rashid

Jashore University of Science and Technology

Classification of solids

Solids are broadly classified into two types crystalline solids and amorphous solids.

2D Crystal

Simple cubic

Body-centered cubic

Face-centered cubic

The Simplest Repeating Unit in a Crystal

The simplest repeating unit in a crystal is called a **unit cell**. Each unit cell is defined in terms of **lattice points**, the points in space about which the particles are free to vibrate in a crystal.

Crystal Systems and Bravais Lattice

epionelynx.wordpress.com

6

Bravais Lattice

Lattice	Types	Edge Length	Angles between faces	Examples
Cubic	Primitive, Body-centred, Face-centred	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	NaCl, Copper and ZnS
Tetragonal	Primitive, Body-centred	a = b ≠ c	$\alpha = \beta = \gamma = 90^{\circ}$	White tin, SnO ₂ , TiO ₂ and CaSO ₄
Orthorhombic	Primitive, Body-centred, Face-centred, End- centred	a≠b≠c	$\alpha = \beta = \gamma = 90^{\circ}$	Rhombic Sulphur, BaSO ₄ and KNO ₃
Hexagonal	Primitive	a = b ≠ c	α = β = 90° and γ = 120°	Graphite, ZnO and CdS
Rhombohedral	Primitive	a = b = c	α = β = γ ≠ 90°	CaCO ₃ (Calcite) and HgS (cinnabar)
Monoclinic	Primitive End- centred	a≠b≠c	α = γ = 90° β ≠ 90°	Sulphur
Triclinic	Primitive	a≠b≠c	α ≠ β ≠ γ ≠ 90°	H_3PO_3 , $CuSO_4.5$ H_2O

A Bravais lattice, studied by Auguste Bravais (1850), is an infinite array of discrete points in three dimensional space generated by a set of discrete translation operations described by:

$$\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$

Where n_i are any integers and $\vec{a_i}$ are known as the primitive vectors which lie in different directions and span the lattice. This discrete set of vectors must be closed under vector addition and subtraction. For any choice of position vector \vec{R} , the lattice looks exactly the same.

2D Crystal

Jashore University of Science and Technology

9

2D Crystal

Jashore University of Science and Technology

10

A Bravais lattice, studied by Auguste Bravais (1850), is an infinite array of discrete points in three dimensional space generated by a set of discrete translation operations described by:

$$\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$

Where n_i are any integers and $\vec{a_i}$ are known as the primitive vectors which lie in different directions and span the lattice. This discrete set of vectors must be closed under vector addition and subtraction. For any choice of position vector \vec{R} , the lattice looks exactly the same.

Bravais lattice in 3D

Primitive lattice vector of sc system

$$\vec{a}_1 = a\hat{x}$$
$$\vec{a}_2 = a\hat{y}$$
$$\vec{a}_3 = a\hat{z}$$

$$\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$

Primitive lattice vector of fcc system

$$\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$

Primitive lattice vector of fcc system

$$\vec{a}_{1} = \frac{a}{2}(\hat{x} + \hat{y})$$

$$\vec{a}_{2} = \frac{a}{2}(\hat{y} + \hat{z})$$

$$\vec{a}_{3} = \frac{a}{2}(\hat{z} + \hat{x})$$

$$\vec{R} = n_{1}\vec{a}_{1} + n_{2}\vec{a}_{2} + n_{3}\vec{a}_{3}$$

Primitive lattice vector of fcc system

$$\vec{a}_{1} = \frac{a}{2}(\hat{x} + \hat{y})$$

$$\vec{a}_{2} = \frac{a}{2}(\hat{y} + \hat{z})$$

$$\vec{a}_{3} = \frac{a}{2}(\hat{z} + \hat{x})$$

$$\vec{R} = n_{1}\vec{a}_{1} + n_{2}\vec{a}_{2} + n_{3}\vec{a}_{3}$$

Primitive lattice vector of bcc system

$$\vec{a}_{1} = \frac{a}{2}(\hat{x} + \hat{y} - \hat{z})$$

$$\vec{a}_{2} = \frac{a}{2}(\hat{y} + \hat{z} - \hat{x})$$

$$\vec{a}_{3} = \frac{a}{2}(\hat{z} + \hat{x} - \hat{y})$$

$$\vec{R} = n_{1}\vec{a}_{1} + n_{2}\vec{a}_{2} + n_{3}\vec{a}_{3}$$

Primitive lattice vector of bcc system

$$\vec{a}_1 = \frac{a}{2}(\hat{x} + \hat{y} - \hat{z})$$
$$\vec{a}_2 = \frac{a}{2}(\hat{y} + \hat{z} - \hat{x})$$
$$\vec{a}_3 = \frac{a}{2}(\hat{z} + \hat{x} - \hat{y})$$

 $\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$

Conventional Unit Cell

A non-primitive unit cell is conventionally chosen for convenience. Typically, these unit cells have a few times the volume of the primitive cell. They can fill space without overlaps and gaps through translational vectors which are sums of multiples of lattice constants. Conventionally, lattice points are assumed to occupy corners of the parallelepiped cells.

The parallelepiped defined by primitive axes $\vec{a}_1, \vec{a}_2, \vec{a}_3$ are called a primitive cell. A primitive cell is a minimum-volume cell. The cell will fill all the space by the repetition of suitable crystal translation operation. There are many ways of choosing the primitive axes and primitive cell for a given lattice.

The volume of a parallelepiped with axes $\vec{a_1}, \ \vec{a_2}, \ \vec{a_3}$ is

$$V_c = \left| \vec{a}_1 \cdot \left(\vec{a}_2 \times \vec{a}_3 \right) \right|$$

3D view showing the number of atoms per unit cell

3D view of cubic crystal system

Simple cubic

Body-centered cubic

Face-centered cubic

Jashore University of Science and Technology

22

Atomic packing factor (APF) or packing fraction is the fraction of volume in a crystal structure that is occupied by constituent particles. It is a dimensionless quantity and always less than unity. In atomic systems, by convention, the APF is determined by assuming that atoms are rigid spheres. The radius of the spheres is taken to be the maximum value such that the atoms do not overlap.

$$\mathrm{APF} = rac{N_{\mathrm{particle}} V_{\mathrm{particle}}}{V_{\mathrm{unit cell}}}$$

 N_{particle} is the number of particles in the unit cell, V_{particle} is the volume of each particle, $V_{\text{unit cell}}$ is the volume occupied by the unit cell

Simple cubic

$$\mathrm{APF} = rac{N_{\mathrm{atoms}} V_{\mathrm{atom}}}{V_{\mathrm{unit \ cell}}} = rac{1 \cdot rac{4}{3} \pi r^3}{\left(2r
ight)^3}$$

 $=rac{\pi}{6}pprox 0.5236$

Face-centered cubic

$$\mathrm{APF} = rac{N_{\mathrm{atoms}} V_{\mathrm{atom}}}{V_{\mathrm{unit \ cell}}} = rac{4 \cdot rac{4}{3} \pi r^3}{\left(2 r \sqrt{2}
ight)^3}$$

$$=rac{\pi\sqrt{2}}{6}pprox 0.740\,48048\;.$$

$$a=2r\sqrt{2}$$
 .

Body-centered cubic

$$\mathrm{APF} = rac{N_{\mathrm{atoms}} V_{\mathrm{atom}}}{V_{\mathrm{unit \ cell}}} = rac{2 \cdot rac{4}{3} \pi r^3}{\left(rac{4r}{\sqrt{3}}
ight)^3}$$

$$=rac{\pi\sqrt{3}}{8}pprox 0.680\,174\,762\,.$$

 $a=rac{4r}{\sqrt{3}}\,.$

27

Characteristics of cubic lattices

STATES STATES TO THE SUBJECT OF THE STATES	AND REAL PROPERTY.	A A A A A A A A A A A A A A A A A A A	CARLES AND AND A REAL PORT
	Simple	Body-centered	Face-centered
CARLON ALTER AND A DESCRIPTION OF A DESC	THE REAL PROPERTY OF	These and the second seco	A CARGO CONTRACTOR
Volume, conventional cell	a^3	a^3	a^3
Lattice points per cell	1	2	4
Volume, primitive cell	a^3	$\frac{1}{2}a^3$	$\frac{1}{4}a^{3}$
Lattice points per unit volume	$1/a^3$	$2/a^{3}$	$4/a^{3}$
Number of nearest neighbors	6	8	12
Nearest-neighbor distance	a	$3^{1/2} a/2 = 0.866a$	$a/2^{1/2} = 0.707a$
Number of second neighbors	12	6	6
Second neighbor distance	$2^{1/2}a$	Ą	a
Packing fraction"	$\frac{1}{6}\pi$	$\frac{1}{8}\pi\sqrt{3}$	$\frac{1}{6}\pi\sqrt{2}$
	=0.524	=0.680	=0.740

Wigner-Seitz cell

Brillouin zone

https://demonstrat ions.wolfram.com/ 2DBrillouinZones/

Brillouin zone

https://demonstrat ions.wolfram.com/ 2DBrillouinZones/

Wigner-Seitz cell

Face Centered Cubic Wigner-Seitz Cell

Body Centered Cubic Wigner-Seitz Cell

Bravais lattice

$$\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$

Reciprocal Lattice

$$\vec{K} = m_1 \vec{b}_1 + m_2 \vec{b}_2 + m_3 \vec{b}_3$$

The reciprocal lattice represents the Fourier transform of the Bravais lattice.

The reciprocal lattice to an fcc lattice is the bcc lattice and vice versa.

$$\vec{b}_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)}$$
$$\vec{b}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_2 \cdot (\vec{a}_3 \times \vec{a}_1)}$$
$$\vec{b}_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_3 \cdot (\vec{a}_1 \times \vec{a}_2)}$$

Brillouin zone

Brillouin zone

basis + **lattice** = **crystal structure**

Jashore University of Science and Technology

35

Crystalline quartz (SiO₂)

Jashore University of Science and Technology

The Miller indices of a lattice plane are the coordinates of the shortest reciprocal lattice vector normal to the plane, with respect to a specific set of primitive reciprocal lattice vectors. Thus a plane with Miller indices ($h \ k \ l$), is normal to the reciprocal lattice vector

$$h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3$$

Miller indices are used to specify directions and planes.

•Determine the intercepts of the face along the crystallographic axes, in terms of unit cell dimensions.

- •Take the reciprocals
- •Clear fractions
- •Reduce to lowest terms

$$(1,2,3) \to (\frac{1}{1}:\frac{1}{2}:\frac{1}{3}) \to (6:3:2) \to (632)$$

Miller Indices are the reciprocals of the parameters of each crystal face.

For Pink Face:
$$\left(\frac{1}{1}, \frac{1}{\infty}, \frac{1}{\infty}\right) \rightarrow (100)$$

For Green Face: $\left(\frac{1}{\infty}, \frac{1}{\infty}, \frac{1}{1}\right) \rightarrow (001)$
For Yellow Face: $\left(\frac{1}{\infty}, \frac{1}{1}, \frac{1}{\infty}\right) \rightarrow (010)$

44

Draw your own lattice planes

https://www.doitpoms.ac.uk/tlplib/miller_indices/lattice_draw.php

(b)(c)(d)*(a)* Point defects in a crystal. (a) Vacancy. (b) Interstitial. (c) Substitutional impurity. (d) Interstitial impurity.

Concepts of Modern Physics – Arthur Beiser

Concepts of Modern Physics – Arthur Beiser

47

Jashore University of Science and Technology

49