Condensed Matter Physics

tiny.cc/phy5111

Jashore University of Science and Technology

Condensed Matter Physics – Michael P. Marder

Density-Functional Theory of Atoms and Molecules – Robert G. Parr and Weitao Yang

Introduction To Solid State Physics – Charles Kittel

The Free Fermi Gas and Single Electron Model

Condensed Matter Physics – Michael P. Marder

Chapter 6

Jashore University of Science and Technology

Much of condensed matter physics lies within a Hamiltonian that one easily can write down in a single line. It is

 $\hat{\mathcal{H}} = \sum_{l} \frac{P_{l}^{2}}{2M_{l}} + \frac{1}{2} \sum_{l \neq l'} \frac{q_{l}q_{l'}}{|\hat{R}_{l} - \hat{R}_{l'}|}.$

The single-electron model

$$\sum_{l=1}^{N} \left(\frac{-\hbar^2 \nabla_l^2}{2m} + U(\vec{r}_l) \right) \Psi(\vec{r}_1 \dots \vec{r}_N) = \mathcal{E} \Psi(\vec{r}_1 \dots \vec{r}_N)$$

$$\left(\frac{-\hbar^2 \nabla^2}{2m} + U(\vec{r})\right) \psi_l(\vec{r}) = \mathcal{E}_l \psi_l(\vec{r})$$

The free Fermi gas

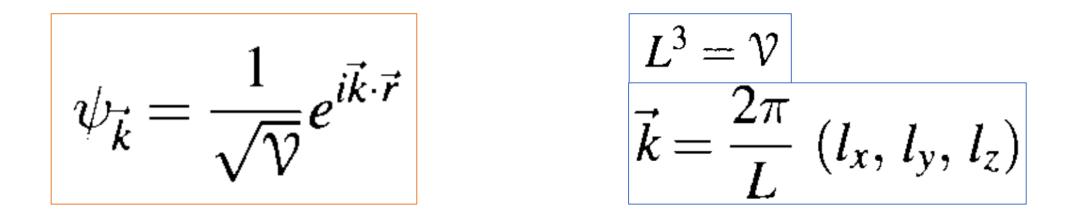
$$\frac{-\hbar^2}{2m}\sum_{l=1}^N \nabla_l^2 \Psi(\vec{r}_1 \ldots \vec{r}_N) = \mathcal{E}\Psi(\vec{r}_1 \ldots \vec{r}_N)$$

To simplify further we imposes periodic boundary conditions

$$\Psi(x_1 + L, y_1, z_1 \dots, z_N) = \Psi(x_1, y_1, z_1 \dots z_N)$$

$$\Psi(x_1, y_1 + L, z_1 \dots, z_N) = \Psi(x_1, y_1, z_1 \dots z_N)$$

One Free Fermion



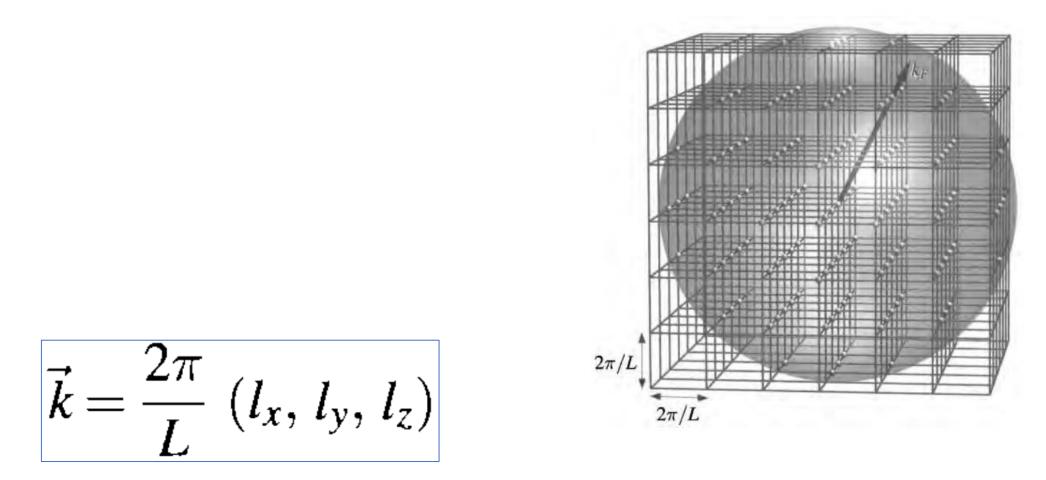
 l_x , l_y , and l_z are integers ranging from $-\infty$ to ∞

$$\mathcal{E}^0_{\vec{k}} = \frac{\hbar^2 k^2}{2m}$$

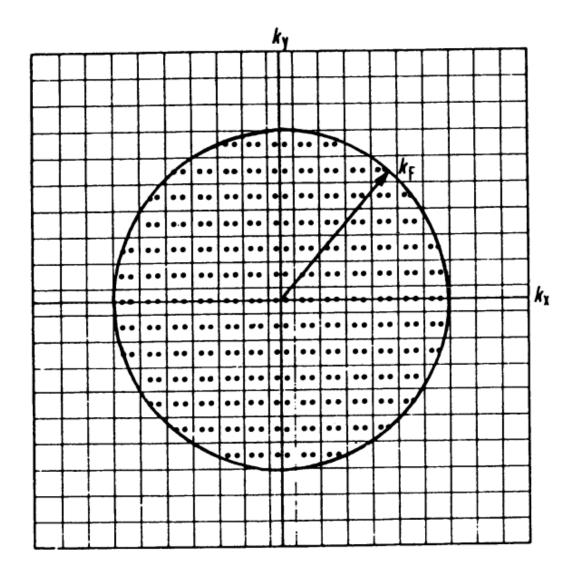
Jashore University of Science and Technology

The ground state of electrons obeying free Fermi gas assumption is constructed from products of the one-electron wave functions. The Pauli exclusion principle forbids any given state from being occupied more than once, and therefore any given state indexed by \vec{k} is able to host no more than two electrons, one for each value of spin.

Many Free Fermions



 l_x , l_y , and l_z are integers ranging from $-\infty$ to ∞



Density of States

$$D_{\vec{k}} = 2\frac{1}{(2\pi)^3}$$

For each wave vector Pauli's exclusion principle allows two electrons, one with spin up and the other with spin down.

$$\int [d\vec{k}] \equiv \frac{2}{\mathcal{V}} \sum_{\vec{k}} = \int d\vec{k} D_{\vec{k}} = \frac{2}{(2\pi)^3} \int d\vec{k}$$

Energy Density of States

$$D(\mathcal{E}) = \int [d\vec{k}] \,\delta(\mathcal{E} - \mathcal{E}_{\vec{k}})$$

The units of densities of states are able to change without much warning. Often they are expressed in units of 1/[eV atom], which means they are related to the function defined by above equation by a factor of density *n*.

Energy Density of States

$$D(\mathcal{E}) = \int [d\vec{k}] \,\,\delta(\mathcal{E} - \mathcal{E}_{\vec{k}}^{0})$$

= $4\pi \frac{2}{(2\pi)^{3}} \int_{0}^{\infty} dk \, k^{2} \delta(\mathcal{E} - \mathcal{E}_{\vec{k}}^{0})$
= $\frac{1}{\pi^{2}} \int_{0}^{\infty} \frac{d\mathcal{E}^{0}}{|d\mathcal{E}^{0}/dk|} \frac{2m\mathcal{E}^{0}}{\hbar^{2}} \delta(\mathcal{E} - \mathcal{E}^{0})$
= $\frac{m}{\hbar^{3}\pi^{2}} \sqrt{2m\mathcal{E}}$
= $6.812 \cdot 10^{21} \,\sqrt{\mathcal{E}/\text{eV}} \,\,\text{eV}^{-1} \,\,\text{cm}^{-3}.$

For the free Fermi gas

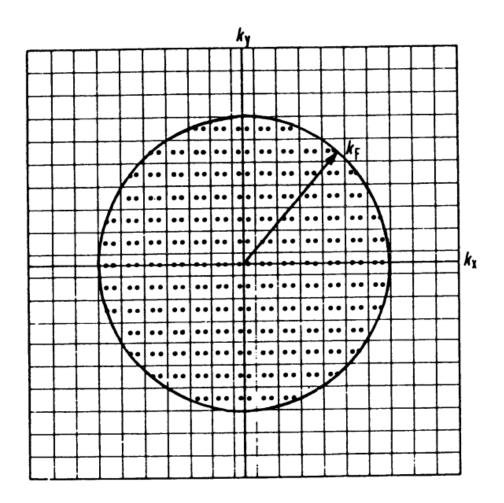
Electron density

The number of electrons that can fit into a sphere of radius k_F is

$$N = \sum_{\vec{k}\sigma} f_{\vec{k}}$$
$$= \mathcal{V} \int [d\vec{k}] f_{\vec{k}},$$
$$= \frac{\mathcal{V}}{4\pi^3} \frac{4\pi}{3} k_F^3 = \frac{\mathcal{V}k_F^3}{3\pi^2}$$

Because $f_{\vec{k}}$ is 1 only if the state is occupied.

$$n = N/\mathcal{V}$$



$$4\pi \int_{0}^{k_{\rm F}} g(k)k^{2}dk = \frac{N}{V_{\rm g}} = n$$

$$(3\pi^{2}n)^{1/3}, \quad E_{\rm F} = \frac{\hbar^{2}}{2m}(3\pi^{2}n)^{2/3}$$

 $k_{\rm F} =$

$$k_F = (3\pi^2 n)^{1/3} = 3.09 [n \cdot \text{\AA}^3]^{1/3} \text{\AA}^{-1}$$

$$\mathcal{E}_F = \frac{\hbar^2 k_F^2}{2m} = 36.46 \ [n \cdot \text{\AA}^3]^{2/3} \text{eV}$$

For the free Fermi gas

$$v_F = \hbar k_F / m = 3.58 \ [n \cdot \text{\AA}^3]^{1/3} \cdot 10^8 \ \text{cm s}^{-1}$$

$$D(\mathcal{E}_F) = \frac{3}{2} \frac{n}{\mathcal{E}_F} = 4.11 \cdot 10^{-2} [n \cdot \text{\AA}^3] \text{ eV}^{-1} \text{\AA}^{-3}$$

Grand Partition Function

$$Z_{\rm gr} = \sum_{\rm states} e^{\beta(\mu N - \mathcal{E})}$$

$$=\sum_{n_1=0}^{1}\sum_{n_2=0}^{1}\sum_{n_3=0}^{1}\ldots e^{\beta\sum_{l}n_l(\mu-\mathcal{E}_l)}$$

$$=\prod_{l}\left\{\sum_{n_{l}=0}^{1}e^{\beta n_{l}[\mu-\mathcal{E}_{l}]}\right\}$$
$$=\prod_{l}\left[1+e^{\beta[\mu-\mathcal{E}_{l}]}\right].$$

$$\sum_{n_1=0}^N \sum_{n_2=0}^N \dots \sum_{n_M=0}^N \prod_{l=1}^M A_{n_l} = \prod_{l=1}^M \left\{ \sum_{n_l=0}^N A_{n_l} \right\}$$

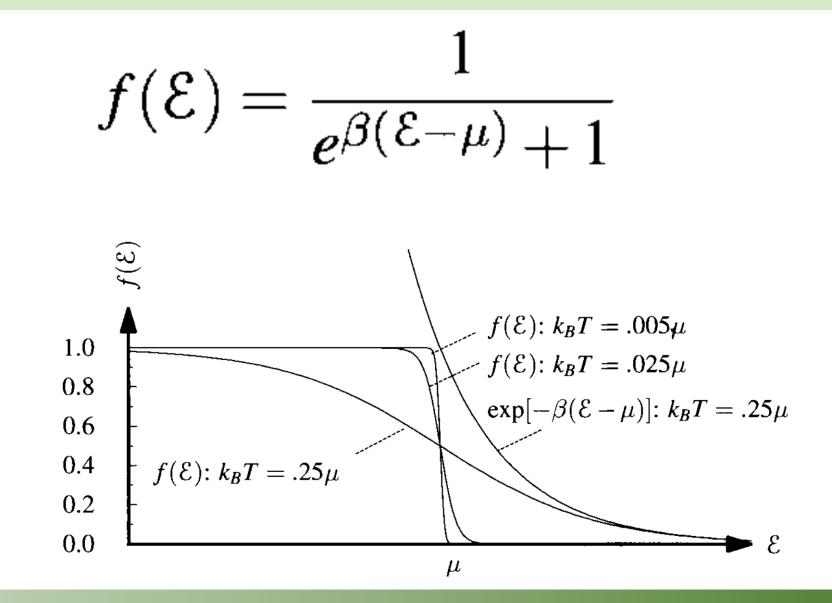
 $\Pi \equiv -k_B T \ln Z_{gr}$ $= -k_BT \sum_{l} \ln \left[1 + e^{\beta[\mu - \mathcal{E}_l]}\right].$ $= -k_B T \mathcal{V} \int d\mathcal{E} D(\mathcal{E}) \ln \left[1 + e^{\beta[\mu - \mathcal{E}]}\right].$

Fermi Distribution Function

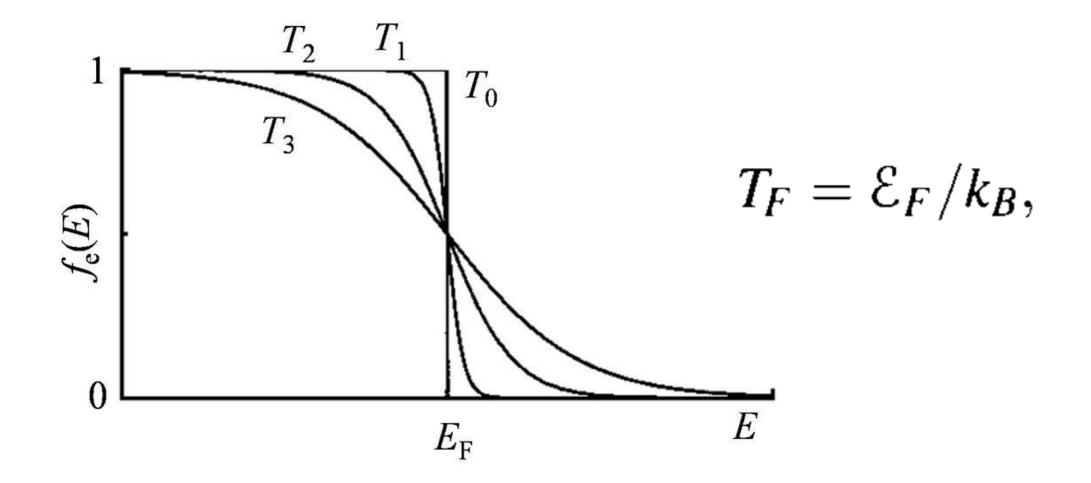
$$\begin{split} N &= -\frac{\partial \Pi}{\partial \mu} \\ &= \mathcal{V} \int d\mathcal{E}' \ D(\mathcal{E}') \frac{e^{\beta \mu - \beta \mathcal{E}'}}{1 + e^{\beta \mu - \beta \mathcal{E}'}} \\ \Rightarrow n &= \frac{N}{\mathcal{V}} = \int d\mathcal{E}' \ D(\mathcal{E}') f(\mathcal{E}'), \end{split}$$

$$f(\mathcal{E}) = \frac{1}{e^{\beta(\mathcal{E}-\mu)} + 1}$$

Fermi Distribution Function

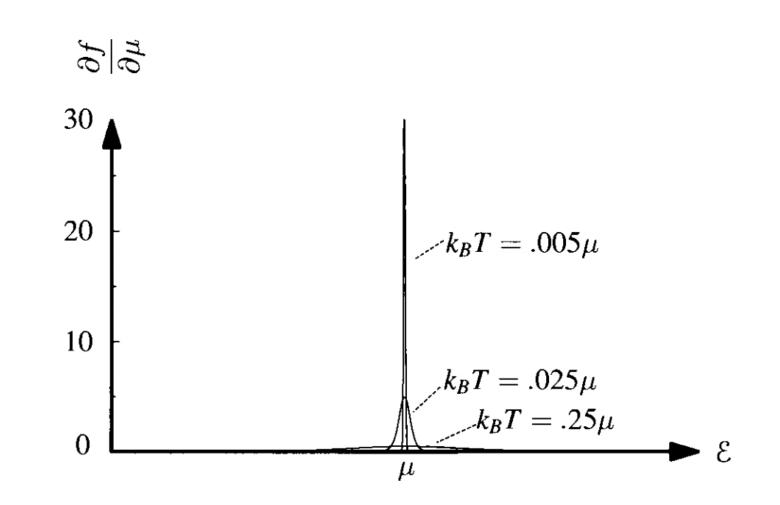


Fermi Distribution Function



Elemen	tΖ	n	k_F	\mathcal{E}_F	T_F	v_F	r_s/a_0
		$(10^{22} \text{ cm}^{-3})$	(10^8 cm^{-1})) (eV)	(10 ⁴ K)	(10^8 cm s^{-1})	
Li	1	4.60	1.11	4.68	5.43	1.28	3.27
Na	1	2.54	0.91	3.15	3.66	1.05	3.99
Κ	1	1.32	0.73	2.04	2.37	0.85	4.95
Rb	1	1.08	0.68	1.78	2.06	0.79	5.30
Cs	1	0.85	0.63	1.52	1.76	0.73	5.75
Cu	1	8.49	1.36	7.04	8.17	1.57	2.67
Ag	1	5.86	1.20	5.50	6.38	1.39	3.02
Au	1	5.90	1.20	5.53	6.42	1.39	3.01
Be	2	24.72	1.94	14.36	16.67	2.25	1.87
Mg	2	8.62	1.37	7.11	8.26	1.58	2.65
Ca	2	4.66	1.11	4.72	5.48	1.29	3.26
Sr	2	3.49	1.01	3.89	4.52	1.17	3.59

The derivative of the Fermi function



Specific Heat of Noninteracting Electrons at Low T

$$c_{\mathcal{V}} = \frac{1}{\mathcal{V}} \frac{\partial \mathcal{E}}{\partial T} \mid_{\mathcal{N}\mathcal{V}}$$

$$c_{\mathcal{V}} = \frac{\pi^2}{3} k_B^2 T D(\mathcal{E}_F)$$

