Non-Interacting Electrons
In a Periodic Potential
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Bloch’s Theorem 1in One Dimension

Bloch proposed that the electron move In a periodic
potential U (¥#), making the problem nearly interactable,
which obeys

U(F+R)=U(7)

For all R in a Bravais lattice.
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The setting for Bloch’s theorem 1n one dimension is a
potential U(x) of period a on a periodic domain of length L

L . p2
The Hamiltonianis | g¢ —

U(R).
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Periodic Potential
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The periodic potential of a crystal results in a delocalized electron. The
Bloch theorem requires the electronic wavefunction have the same
periodicity as the lattice and therefore has a slowly varying envelope u(r).
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Schrodinger equation in one dimension

h O?
Sy 3x2w(x) +U (x)(x) = EY(x)

The one-dimensional space where  Is defined is of length L i.e. y to be periodic.
Suppose that the potential U(x) was just U(x) =0

p(x+L) = 1p(x) i (x) = N3




Schrodinger equation in one dimension

h O?
Sy 3x2w(x) +U (x)(x) = EY(x)

When the potential U(x) Is not zero, the solutions retain
the same basic structure, but change to

ikx

e u(x)
v =5
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Bloch wave function

e u(x)

VN

1) is normalized over the whole system, u is normalized over a single unit cell

Yr(x) =

Where u(x) Is a function that like U(x) Is periodic with
period a, and where N = L/a iIs the number of cells In
the full periodic system. That Is, the solutions are plane
waves exp[ikx] modulated by a periodic function u(x).
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Bloch wave function

Periodic function u(x)

A
|

P(x) = explikriu(x) \uh \m‘

Bloch wave functions are periodic functions u(r) modulated by a plane wave
of longer period. The lower portion of the figure displays the real part of w(x)
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Bloch wave function

Fourier’s theorem says that every periodic function can be
written as a sum of all the complex exponential functions
exp[ikx] that share the same period. Because y IS periodic
with period L, w(X) can be written as a sum of Fourier
components exp[iq'x] where g’ Is of the form ' = 2xl'/L and
I'c(—oo...—1,0,1...00)Isany integer:

1 N iq'x
%D(X)—ﬁ ;w(q)eq
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Bloch wave function

U is periodic with period a = L /N, and it can be written as a sum of Fourier com-
ponents exp|iKx| where the reciprocal lattice vector K is of the form K =27l /a,

and / 1s an integer: _
U(JC) = Z UKele.
K

h2 12 y g q’
S 2 ity + Y (g Uk = € Y ()
q'K q’




Bloch wave function

This equation must hold separately for each Fourier component exp|igx],a condi-
tion imposed formally by choosing g = 27//L, multiplying Eq. (7.9) by exp[—igx]/L
and integrating from O to L. It is easy to verify that

/ dx &4~ = 0g.4'; /dxe’(q“( —x — = 0y g—K-

Therefore

4)+Z -k () Ux = E9(q).

= (&4 —E)W(g)+ ) v(g—K) Uk =0.
K
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Bloch wave function

Suppose one has a solution. There must be at least one k = 27wm/L for which
(k) is not equal to zero. The equation for v/(k) involves ¥(k — K) for all K of the
form 27l /a. Pick any of these wave function components, say ¥)(k — K'), and ask
what Eq. (7.12) implies. It says

(E_x —E)W(k—K')+ > (k~K —K) Uy =0
K

the sum index.

= (gg_Kf —g)gﬁ'(k—K,) +Z w(k—K) UK—K" — (). Send K — K —K' as
K

(EL—)(q)+ > w(g—K) Uk =0. | ¥(q) =D Sgrsk ux:
K K
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Bloch’ Theorem

1
7,&()() = ﬁ Z 5q’,k—|—K UKE€ iq'x Z Ug t',’l(k-l_‘r())f
q'K
N w( ) €lkxu(x) h ( Z iKx L/ais th
— wnere U . — L/a1s the
g \/ﬁ * “K € number of unit cells.
o K)Ux=0
( i Z w 1 K The Fourier component k
K Is called the wave number
eikx n ( x) and 7k is called the crystal
Uy (x) — ~ — wk(x+a) _ ?,Dk(x)elka. momentum.
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Table 7.1. The structure of Bloch’s Hamiltonian in reciprocal space

) Y(Ko) \
(/ &, tUxk  Ux_, .. Ux_y \ \ V(K1)
Uk, 801{1 +Ug, - Uky _ ¥(K7)
Uk, Uk, Uks _u '
. 0.
\ EOK +UK0) '
M—1
821 +UK0 UXfl w(KM—I)
0 Ui Eor t UK (ki + Ko)
' o Wik +Kp)

This matrix contains blocks that link together wave function components ¥ (k, + K;) for
a given m, where k,, = 2wm/L and K; = 2wl /a. There are no matrix elements connecting
1 (q)’s when the ¢’s do not differ by reciprocal lattice vectors. The dimension of each block
is M, the number of reciprocal lattice vectors retained in the calculation, while the total
number of blocks is equal to the total number of unit cells, N = L/a.




Choosing k specifies a set of Fourier components g = k£ + K from which the
wave function 1, will be constructed. Choosing k + K’ picks out exactly the same
set. From this point of view, two wave numbers k are physically distinct only if
they do not differ by any reciprocal lattice vector K. This means that indices &
should be chosen from

2mm T
k = —— where k € [——, —| Taking £ in the interval [0, 27/a] would do
L 2a’ 2a justas well,

This collection of k = 2wm/L, m € [-N/2, N/2 — 1] is called the first Brillouin
zone, and will be defined in greater generality in Section 7.2.4.
Thus a complete set of solutions to Eq. (7.12) 1s

B % e (X)
wnk (x) — \/N

where k lies in the first Brillouin zone, and the band index runs from O to oc.
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Bloch's Theorem in Three Dimensions

. p? ) -
TH=2——|—U(R). U(F+R) =U(7)
m

Y(F) = —-\/1__\}. Z w@*)eifj-?_ U(r) = Z ei.’?-? [

q K
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Bloch's Theorem in Three Dimensions

(&3 +Z (G—K) =0

q) = Z 52;',?24—1? “g
K




Implication of Bloch's Theorem

o Effective Hamiltonian
« Counting k
 Brillouin Zone

* Density of States

* Energy Bands
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Kronig-Penney Model

Kronig and Penney (1931) found an exactly soluble model that illustrates the nature
of energy bands. Suppose that in each unit cell of a one-dimensional lattice with
lattice points R = na and reciprocal lattice vectors K, there is a potential of the
form

Upad(x), ais the lattice spacing.

where Uy has dimensions of energy. Then Uk as defined in Eq. (7.26) is simply

Uk = Uy,

0

|

(E9—E)v(q)+)_ Unb(q—K).
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Kronig-Penney Model




Kronig-Penney Model

U
O+ <0 ° er=0-
K “k—K

Assuming that Q; does not vanish,

1 Z 1
Uy &) ¢
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Brillouin zone for the

(a) simple cubic,

(b) face-centred cubic,

(c) body-centred cubic, and
(d) hexagonal lattice.

The most important points and lines

of symmetry are shown, together
with their nomenclature.

@ Jashore University of Science and Technology




