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Bloch’s Theorem
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A Bloch wave function
(bottom) can be broken up
into the product of a periodic
function (top) and a plane-
wave (center). The left side
and right side represent the
same Bloch state broken up in
two different ways, involving
the wave vector k, (left) or k,
(right). The difference (k,-k,)
is a reciprocal lattice vector.
In all plots, blue is real part
and red is imaginary part.
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How strong Is the interaction?
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Nearly Free Electrons
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A formal means to treat the potential U as small 1s to define

U= = /A wsz= A is the small parameter in terms of which
K perturbation theory will expand.
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Nearly Free Electrons

Zeroth Order: b () [8 8“’)] 0.
Extended zone scheme: Reduced zone scheme:
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Nearly Free Electrons

First Order: (g%~ (') +Z’“’K¢(O) —K)— ) — &My () =0.

Taking wg’) from previous solution and evaluation at g = k gives £ = wy.
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Degenerate Perturbation Theory

One way to obtain a resolution of this problem is to recast Schrodinger's
equation in variational form, as discussed Iin Appendix B. Solving the
Schrodinger's equation is equivalent to finding extrema of the functional

(W[ (H~E)).
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Bloch's Theorem in Three Dimensions
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Degenerate Perturbation Theory

In the present case, the plan is to restrict all attention to wave
functions that are linear combinations of the two vectors |;) = |k)
and |v») = |k+ K), but otherwise solve the Hamiltonian exactly.
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Degenerate Perturbation Theory

At the point where £%+ o = €2 is exactly satisfied, one obtains

E = 8%+U0——‘Uff(-

Thus the energy gap &, between bands is

&g = 2|Ugl.
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Degenerate Perturbation Theory (1D)
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Figure 8.2. Construction of Brillouin zones. (A) Perpendicular bisectors are drawn be-
tween the origin and all nearby reciprocal lattice points. These are the zone boundaries.
(B) The first, second, and third Brillouin zones are shaded in different colors. The first
zone is the set of points closer to the origin than any other reciprocal lattice point, the sec-
ond zone is the set of points that one reaches by passing a minimum of one zone boundary,
and the third zone is the set of points that one reaches by crossing a minimum of two zone
boundaries.




Brillouin Zones

d Figure 8.3. The first Brillouin zone can be viewed
7 b as a closed surface whose edges are connected to
o each other. Therefore a path that appears to be
AR F leaving from one edge is actually entering from
I d 7 another, as shown in this representation of straight
“b o line motion. This view of the first Brillouin zone is
motivated by the fact that physical quantities such
as & are periodic functions over the first Brillouin

zone.
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Brillouin zone
boundary intersection
for square lattice

In two dimensions
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Nearly Free Electron
Fermi Surfaces
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Figure 8.5. Fermi surface for three electrons per site in an fcc crystal. On the left the
free-electron Fermi surface is shown in the extended zone scheme, while on the right the
same surfaces are projected back into the first Brillouin zone in the reduced zone scheme.
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Figure 8.6. Nearly free electron Fermi surfaces for fcc crystals. With three electrons per
unit cell the Fermi surface extends slightly into the fourth Brillouin zone, but the pocket is
very small and is not shown.
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Nearly free electron Fermi
surfaces for bcc crystals
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Nearly free electron
Fermi surfaces for
hexagonal crystals
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