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The Schrodinger equation

Any problem in the electronic structure of matter is covered by Schrodinger's
equation including the time. In most cases, however, one iIs concerned with
atoms and molecules without time-dependent interactions, so we may focus on
the time-independent Schrodinger equation. For an isolated N-electron atomic
or molecular system in the Born-Oppenheimer nonrelativistic approximation,
this is given by .

HY =E¥Y

where E Is the electronic energy, ¥ = W(x,, x,, . . . , x,,) IS the wave function, and
H is the Hamiltonian operator

=3 %Vz)+2 v(r,)+2-——
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.




The Schrodinger equation

=2 ( %V2)+Ev(r:)+2-~

i=1 t<j

in Wthh
2: Zaf

is the “external” potential acting on-electron i, the potential due to nuclei
of charges Z,,. The coordinates x; of electron i comprise space coordinates
r; and spin coordinates s;, Atomic units are employed here and
throughout this book (unless otherwise specified): the length unit is the
Bohr radius a,(=0.5292 A), the charge unit is the charge of the electron,
e, and the mass unit i1s the mass of the electron, m,.
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The Hamiltonian operator
H=T+V,.+ V.

where
N

=2, (=3v0)

i

is the kinetic energy operator,
N

= E v(r;)

is the electron—nucleus attraction energy operator, and

Z.._

I<]

is the electron—electron repulsion energy operator.
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The total energy

a<f Raﬁ

W=E+V,
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Probability distribution function

W (", s™) |? dr™ = probability of finding the system
with position coordinates between r"¥ and
r" + dr" and spin coordinates
equal to sV

Here dr”¥ =dr,, dx,, . . . ,dry; ¥ stands for the set r;,r,, ..., Iy, and s

stands for the set s,, 55, . . ., Sy. The spatial coordinates are continuous,
while the spin coordinates are discrete. Because electrons are fermions,
¥ also must be antisymmetric with respect to interchange of the
coordinates (both space and spin) of any two electrons.

[ W, dx = (W, | W) = 8,
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Expectation values of observables

f‘P*/i‘P dx

_(w|A|¥)
(A) =
f\P*IIfdx (W W)
T[¥]=(T) *—-[\P*T‘\Ifdx
—AL
V[P]=(V) ﬂflp*v\pdx (W | W)
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Variational principle for the ground state

(V| H|¥)
(W %)

E[W] =

The energy computed from a guessed W is an upper bound to the true
ground-state energy E,. Full minimization of the functional E[¥] with

respect to all allowed N-electron wave functions will give the true ground
state W, and energy E[|W,] = E,; that is,

EO — min E[IP]
g/
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The Hartree-Fock approximation

Suppose now that W is approximated as an antisymmetrized product of N
orthonormal spin orbitals 1,(x), each a product of a spatial orbital ¢(r)
and a spin function o(s) = a(s) or B(s), the Slater determinant

Pi(x)  YaAxy) - Ya(xy)

W Pi(X2)  YPax) - Pa(Xy)
HE . : ;

3

11’1(.’%.!) WZ(.XN) T 1/’1\((."%)

|

21~

,det |19z - - Yl
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The Hartree-Fock approximation

The normalization integral (Wye | Wur) is equal to 1, and the energy
expectation value is found to be given by the formula (for example, see

Parr 1963)
N N
Eye= (‘PHF‘ H ‘lpHF> = 21 H; + % 2 (J,:,- - Kij)
i= ij=1
where

H= | 903V + v ) d
. Jij = J[ vi(x) Y7 (x1) i V5 (%) Pi(xy) dx; dx;
| r2

1
K;= JJ' (1 (xl)wj(xl) ;’1'; Yi(x2) ‘P}k(xz) dx, dx;
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The Hartree-Fock approximation

| 1
ij = IJ ‘Pf(xl)w:'k (x,) — "P}k (x,) "Pj(xz) dx, dx,
| ri2

1
K; = fJ' (1 (Xl)Wj(xl) ‘r"l'; w;(xz)w;"(xz) dx, dx,

These integrals are all real, and J; = K;; =0. The J;; are called Coulomb
integrals, the K, are called exchange integrals. We have the important
equality

Ji = K
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The Hartree-Fock differential equation

N
Fy,(x) = Z &5Y;(x) *
.

where

F=-1V?+v+g
in which the Coulomb-exchange operator g(x,) is given by

g=]—k
Here

sy =3 [vitawe —fx) dx,

and

ks =2 [ wita)f @ -——1— Pa(x) d%,

with f(x;) an arbitrary function.
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Orbital energy
N
Ei= & = (V’iIF'V’f) =Hf+}: ( ij_Kij)
j=1
Summing over i
N
Eyr= Z & — Ve
i=1
where the symbol V,, stands for the total electron—electron repulsion

energy
1

Vee = | Wiex) (3 -

i<jTij

)\I’HF(xN ) dx™

N
:% 2 (Jij"” Kij)
i,j=1

i} lashore University of Science and Technology "N br Rachid 2021




Total molecular energy

Wag = &~V t+V,

H;+ Ve + V.0

I

>
=1
>
=1
Note that neither Egyr nor Wy is equal to the sum of orbital energies.
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Restricted Hartree-Fock method (RHF)

For a system having an even number of electrons, in what is called the
restricted Hartree—Fock method (RHF), the N orbitals y, are taken to
comprise N/2 orbitals of form ¢.(r)a(s) and N/2 orbitals of form
¢« (x)B(s). The energy formula

NP2 NP2
Eyp=2 kE H, + Z (20 — Kur)
~1 k1=1

where

He = | $1@[-1% + v(©)]g(e) dr
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Restricted Hartree-Fock method (RHF)

1
Ja= [ | 10401 = 16,@) dry dr. ,\ w2
Fo () =2, ErPi(x)
=1

‘ 1
K= ff ‘P:(l'l)‘f’l(l'l) ;; Pr(r2) 9/ (x2) dr, dr,

) =2 3 [ I6m(eP - desf (e

N2
1
R ()= 2 [ 6 (0) - drag(e)
m=1 4V)
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Restricted Hartree-Fock method (RHF)

¢1(r)a(s) Pi(x)B(sy) - -- Par(r)B(s;)

V7 __1 Ppi(r)al(ss)  Pi(r)B(sy) - -- ¢N/2(r2)ﬁ(s2)
ETYNY] S

¢1(;'N ) ('S N) ¢1(.IN)ﬁ (.S N) CPN/z(l'N)ﬁ (S N)

F . | A .
Flon(r) = €X.4,.(r) gh = _J
Canonical Hartree-Fock equations Am ~ €XP [—(—2€max)'?r]  for large r

re University of Science and Technology " prRachid, 2021



Limitations of the Hartree-Fock approximation
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Correlation energy

The exact wave function for a system of many interacting electrons is
never a single determinant or a simple combination of a few deter-
minants, however. The calculation of the error in energy, called
correlation energy, here defined to be negative,

Eg)lir =F — EHF

IS a major problem in many-body theory on which there has been a vast
amount of work and much progress has been made.
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Correlation energy

Correlation energy tends to remain constant for atomic and molecular
changes that conserve the numbers and types of chemical bonds, but it
can change drastically and become determinative when bonds change. Its
magnitude can vary from 20 or 30 to thousands of kilocalories per mole,
from a few hundredths of an atomic unit on up. Exchange energies are an
order of magnitude or more bigger, even if the self-exchange term is

omitted.




Electron density

In an electronic system, the number of electrons per unit volume in a
given state is the electron density for that state. This quantity will be of
great importance in this book; we designate it by p(r). Its formula in

terms of W is

p(ry) ﬂNf- : -[I\P(xl,xz, XN ds dx, - - - dxy

This is a nonnegative simple function of three variables, x, y, and z,
integrating to the total number of electrons,

fp(r) dr=N
~ DrRashid,2021
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Electron density

At any atomic nucleus In an atom, molecule, or solid, the electron
density has a finite value; for an atom we designate this p(0). In the
neighborhood of a nucleus there always is a cusp in the density owing to

the necessity for Hamiltonian terms —3V* —(Z,/r,) not to cause blowups
in AW there. The specific cusp condmon is (for example, see Davidson
o

— _o=—2Z.p(0
ar P("af)‘r,,mo p( )

where p(r,) is the spherical average of p(r,).
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Electron density

Another important result is the long-range law for electron density,
p ~ exp [~2(2Umin) 7] (1.5.4)

where [, is the exact first ionization potential (Morrell, Parr, and Levy
1975; this paper also contains a generalization of Koopmans’ theorem).
The corresponding Hartree—Fock result will be, from (1.3.33),

Pur ~ €XPp ["2(_25max)1/2"] (1.5.5)
where €,,,, approximates I ;, by (1.3.32).




