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Electron density

In an electronic system, the number of electrons per unit volume in a
given state is the electron density for that state. This quantity will be of
great importance in this book; we designate it by p(r). Its formula in

terms of W is

p(ry) ﬂNf- : -[I\P(xl,xz, XN ds dx, - - - dxy

This is a nonnegative simple function of three variables, x, y, and z,
integrating to the total number of electrons,

fp(r) dr=N
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Dirac notation

In one-to-one correspondence with the space of all kets (), there is a
dual space consisting of bra vectors (W¥|. For an arbitrary bra (®| and ket
(W), the inner product (® | ¥) is defined by

(@ |¥) = Z oY, (®| W) =f<I)*(r)\Il(r) dr

(@ |W)=(¥]|o)*

(P|¥) =1
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Dirac notation

Consider now a complete basis set {|f;)} (for example, the eigenstates
of some Hamiltonian), satisfying the orthonormality conditions

(fi1£) = 6; (2.1.5)
Then any ket |¥) can be expressed in terms of the ket basis set |f;) by
w) =3 1) (2.1.6)

Taking the inner product of [W) with a bra (f|, we find the jth
component of |¥) in the representation of the |f.),

W= (f; | ¥) | (2.1.7)




Dirac notation
If the basis set is continuous, the orthonormality condition becomes
(r|r')=46(r—r")
where 4(r —r’) is the Dirac delta function, and for an arbitrary ket |¥),

) = [ W(r) [r) dr (2.1.9)

and
Y(r)= (r | W) (2.1.10)

Here W(r) is precisely the ordinary wave function in coordinate space. If
a basis set [p) were used, one would instead get the momentum-space

function. Bras may be expanded similarly.
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An operator A transforms a ket into another ket in the Hilbert space,
A W) =|A¥) =|w') (2.1.11)
The adjoint of A, denoted by A', transforms the corresponding bra,
(W AT = (AW| = (W'| (2.1.12)

An operator is self-adjoint, or Hermitian, if it equals its adjoint;
operators corresponding to observables always have this property. For
normalized ket and bra, (2.1.11) can be written

AE) =(12) (¥) |¥) (2.1.13)
and (2.1.12) as )
(WA= (P] (%) (¥']) (2.1.14)

When a bra (| and a ket | ) are juxtaposed, one has an inner product if
(| is before | ), i.e. (||)=1(]); and an operator if | ) is before ( |.




Dirac notation

The projection property is manifest when P, acts on the ket |¥) of
(2.1.6):

P W) =1f)(fi | ¥)
=, |f) (2.1.16)

Note that only the part of [¥) associated with |f;) is left. Projection
operators have the property

P.-P=P (2.1.17)

For this reason, they are said to be idempotent.
W) =3 LI IR =S G SIG=S =1
~ DrRwshid,201
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Dirac notation

Let the kets |a;) be the complete set of eigenkets of the linear operator
A, with eigenvalues a;. Then

Ala’i>:ai|a’i>: A‘“:‘)("«’A:ai‘“i)(a’il

A=A ) el =2 a;lo) (el (2.1.25)

Here again the sum becomes an integral in the continuous case.
If particle spin is included in the above, then the closure relation Is

jdx Ix) (x| =D, fdr e, s)(x,s| =1 (2.1.26)

With this interpretation of integrals, all of the above equations may be
regarded as including spin, with r replaced by x.




We now turn to a quantum system of many identical particles, for
which the foregoing concepts and formulas go through when suitably
generalized. However, a new feature appears—the antisymmetry (or
symmetry) of fermion (or boson) wave functions with respect to exchange
of indices (coordinates) of any two particles. The antisymmetric and
symmetric states span subspaces of the N-particle Hilbert space, %, the
subspaces denoted by ¥4 and 5. We focus on %4, since electrons are
fermions. In 7, a normalized basis ket for N particles in suitably defined
states |ay), |®,), - - -, |an), respectively, is

- - - ay) =|ay) |ay) - - - |an) (2.1.27)
while for fermions, a typical normalized antisymmetric basis ket would be

1
oy - - - ay) =N > (=1)PP |ayay - - - ay) (2.1.28)
VIN:p
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Dirac notation

where the P’s are operators permutating particle coordinates and (—1)” is
the parity of the permutation P. The closure relation in # is

2 ]a’laz s a’N)(a’laz s CYN' =j (2129)

1 )
Y, —laney ey @y eyl =1 (2.1.30)

xi, (1'2 ----- oy N!

The summations in both formulas become integrals if the indices are
continuous.
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Dirac notation

W(r)= (x| W)

Generalizing (2.1.10), the N-electron coordinate wave function is
related to the abstract ket vector in %% by

CWaN(xgxp s X)) = (XX; - - - xn [Py) (2.1.31)

In the case that |Wy) takes the form (2.1.28), describing N independent
electrons moving in N one-electron states, one can show from (2.1.31)
that Wy is a Slater determinant of the form of (1.3.1).

1
oy - - - a’N) x\/]—\']‘,E (“1)pP oy - - - ary)
: P
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Density operators

lpN(Xﬂ’(z t e XN)lp?:r(xlxz e Xpy)

yN(x{x;S_ XD V5 & SRR Xy) =Wh(xixy - - - xp) PN X, - - - Xn)

Density operators: | |W,, ) (Wnl = 9,

(X1X2 * * = Xpl PN %1%+ - - X)) = (Xqx5 - - - [P (Pn] xix; - - ‘)

=Walxixz - - - X)W p(xx, - - - Xn)
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Density operators

Note that  is a projection operator. We then have for normalized Wy,
tr (¥) = f Wy xMWr(xM) dxV =1 (2.2.5)‘

where the frace of -the operator A is defined as the sum of diagonal
elements of the matrix representing A,

(A) =tr (PnA) =tr (A9n)
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Density operators

An operator description of a quantum state becomes necessary when
the state cannot be represented by a linear superposition of eigenstates of
Aa particular Hamiltonian Hy (‘“by a vector in the Hilbert space #y").
This occurs when the system of interest is part of a larger closed system,
as for example an individual electron in a many-electron system, or a
macroscopic system in thermal equilibrium with other Macroscopic
systems. For such a system one does not have a complete Hamiltonian
containing only its own degrees of freedom, thereby precluding the
wave-function description. A state is said to be pure if it is described by a
wave function, mixed if it cannot be described by a wave function.

A system in a mixed state can be characterized by a probability
distribution over all the accessible pure states.
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Density operators

['= 2 p: W) (¥, (2.2.7)

where p; is the probability of the system being found in the state |W;),
and the sum is over the complete set of all accessible pure states. With
the |¥;) orthonormal, the rules of probability require that p; be real and
that

pi=0, > p=1 (2.2.8)

Note that if the interactions can induce change in particle number, the
accessible states can involve different particle numbers.

€ \ Jashore University of Science and Technology




Density operators

Te@=2 2 p (1 W) (Wilfe) Bl TIf) = 2 pi i | W (W1 )
=§i:Pi (‘P,lﬁkllfk)(ﬁcllpz) =Zpi{<ﬁllpi)<lyi|fk>}*
"—'gpf(lpillpi):zpiml =(ﬁ'f|fk>*

It also 1s positive semidefinite:
(Fl T1fe) =2 pi | (e | B =0

The p; are the eigenvalues of T".
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Density operators

The foregoing definitions and properties also hold for time-dependent
pure-state density operators ¥y and ensemble density operators I'. From
the time-dependent Schrodinger equation,

o A
i [Wy) = H Wy ) (2.2.15)
we find )
2 = (S 1200 ) (0l + 1) = (B
_H
B Cond = ) (ol
ik ih
so that
5 9 . A
ih— v =[H, Tn] (2.2.16)
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Density operators

[H, f‘] =(0  for a stationary state
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