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Electron density

In an electronic system, the number of electrons per unit volume in a
given state is the electron density for that state. This quantity will be of
great importance in this book; we designate it by p(r). Its formula in

terms of W is

p(ry) ﬂNf- : -[I\P(xl,xz, XN ds dx, - - - dxy

This is a nonnegative simple function of three variables, x, y, and z,
integrating to the total number of electrons,

fp(r) dr=N
~ DrRashid,2021
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Introduction

We are now ready to begin to expound the density-functional theory of
electronic structure, the principal subject of this book. This is a
remarkable theory that allows one to replace the complicated N-electron
wave function W (x;, X5, ...,Xy) and the associated Schrodinger equa-
tion by the much simpler electron density p(r) and its associated
calculational scheme. Remarkable indeed!

There is a long history of such theories, which until 1964 only had
status as models. The history begins with the works of Thomas and Fermi
in the 1920s (Thomas 1927; Fermi 1927, 1928a, 1928b; March 1975).
What these authors realized was that statistical considerations can be
used to approximate the distribution of electrons in an atom.
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The Thomas-Fermi model

The assumptions stated by Thomas (1927) are that: “Electrons are
distributed uniformly 10 the six-dimensional phase space for the
motion of an electron at the rate of two for each h3of volume,” and
that there Is an effective potential field that “is itself determined by
the nuclear charge and this distribution of electrons.” The Thomas-
Fermi formula for electron density can be derived from these
assumptions.

TTF[p] = CFJ pSB(r) dl', CF = “'13_0(3752)2/3 =2.871
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The Thomas-Fermi model

We divide the space into many small cubes (cells), each of side [ and
volume AV =/°, each containing some fixed number of electrons AN
(which may have different values for different cells), and we assume that
the electrons in each cell behave like independent fermions at the
temperature 0 K, with the cells independent of one another.

The energy levels of a particle in a three-dimensional infinite well are
given by the formula

h2
8ml*

h2
8ml?

g(ny, n,, n,)= (nZ+n’+n?)

R? (3.1.1)

where n,, n,,n,=1,2,3,...
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For high quantum numbers, that is, for large R, the number
of distinct energy levels with energy smaller than € can be approximated
by the volume of one octant of a sphere with radius R in the space
(n., n,, n,). This number is

1/4xR> 7 (8ml’e\*?
@(8)__§( 3 )_6( ) G.1.2)
The number of energy levels between € and € + ¢ is accordingly
g(e) Ae=dP(e + 0¢e) — P(¢)
12 3/2
= %r (87:2 ) e'? 8 + O((6¢)?) (3.1.3)

where the function g(¢) is the density of states at energy .
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To compute the total energy for the cell with AN electrons, we need
the probability for the state with energy &, to be occupied, which we call
f(¢). This is the Fermi—Dirac distribution,

1
&) =15 (3.1.4)
which at 0 K reduces to a step function:
1, e<€
f(g):{o g>ei as foe (3-1.5)

where &y is the so-called Fermi energy. All the states with energy smaller
than e are occupied and those with energy greater than & are
unoccupied. The Fermi energy & is the zero-temperature limit of the
chemical potential pu.




The Thomas-Fermi model

Now we find the total energy of the electrons in this cell by summing
the contributions from the different energy states:

AE = ZI ef (e)g(e) de

3/2 L oF o
=47 (g—’—?) & f e de
h | 0

8.71' 2 3/2 :
= ( h’?) Pes? (3.1.6)

where the factor 2 enters because each energy level is doubly occupied,
by one electron with spin a and another with spin B.
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The Thomas-Fermi model

The Fermi energy ¢, is related to the number of electrons AN in the cell,
through the formula

87 (2m)\*"*
AN =2 [ F@ge)de =5 (2) "p ey

3
AE:EANEF

() e (3
" 10m \8x /3
p=AN/P=AN/AV
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Trelp] = CFJ p*(r) dr,

Cr=33x2)*=2.871




The Thomas-Fermi model

TTF[P] = CFJ p5/3(r) dl', Cp = ‘13'_0(3.77:2)2/3 =2.871

We here first encounter one of the most important ideas in modern
density-functional theory, the local density approximation (LDA). In
this approximation, electronic properties are determined as functionals

of the electron density by applying locally relations appropriate for a
homogeneous electronic system.

E[p(r)] = Cs j p>P(r)dr—Z f Ef_i) dr +% J’ pl(l:llpglz) dr, dr,
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Countless modifications and improvements of the Thomas—Fermi
theory have been made over the years. Some of them will be discussed in
Chapter 6, where the underlying approximations will also be examined in
some detail. Unfortunately, the primitive method just described founders
when one comes to molecules. As will be shown in Chapter 6, no
molecular binding whatever is predicted in the method (Teller 1962).
This, plus the fact that the accuracy for atoms is not high as that with
other methods, caused the method to come to be viewed as an
oversimplified model of not much real importance for quantitative
predictions in atomic or molecular or solid-state physics.

However, the situation changed with the publication of the landmark
paper by Hohenberg and Kohn (1964). They provided the fundamental
theorems showing that for ground states the Thomas—Fermi model may
be regarded as an approximation to an exact theory, the density-

functional theory.
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The Hohenberg-Kohn theorems

The first Hohenberg-Kohn theorem (Hohenberg and Kohn
1964) legitimizes the use of electron density p(r) as basic
variable. It states: The external potential v(r) is determined,
within a trivial additive constant, by the electron density
p(r). Since p determines the number of electrons, it follows
that p(r) also determines the ground-state wave function ¥
and all other electronic properties of the system. Note that
v(r) IS not restricted to Coulomb potentials.
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The Hohenberg-Kohn theorems

The proof of this theorem of Hohenberg and Kohn is disarmingly
simple. All that is employed is the minimum-energy principle for the
ground state. Consider the electron density p(r) for the nondegenerate
ground state of some N-electron system. It determines N by simple
quadrature [(1.5.2)]. It also determines v(r), and hence all properties.
For if there were two external potentials v and v’ differing by more than
a constant, each giving the same p for its ground state, we would have
two Hamiltonians H and H' whose ground-state densities were the same
although the normalized wave functions ¥ and W' would be different.
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Variational principle for the ground state

(V| H|¥)
E[¥] = (W [0 E[V]=E

The energy computed from a guessed W is an upper bound to the true
ground-state energy E,. Full minimization of the functional E[¥] with

respect to all allowed N-electron wave functions will give the true ground
state W, and energy E[W,] = E,; that is,

E,= mln E[W¥]
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The Hohenberg-Kohn theorems

Taking W' as a trial function for the H problem, we would then have,
E,<{(W'NH|V)=(¥|H|¥)+ (¥ H-A|¥)
= Eg+ [ p()lv® - v'@]dr

where E, and E, are the ground-state energies for H and H', respecively.
Similarly, taking W as a trial function for the H' problem,

E <{(W|H |¥)=(V| H|¥)+ (V| A -H|¥)
= Eo— [ p(0)[v(®) ~ v'(e)] dr.

E,+ E,<Ey+ E,
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The Hohenberg-Kohn theorems

Thus, p determines N and v and hence all properties of the ground
state, for example the kinetic energy T[p], the potential energy V|p],
and the total energy E[p]. In place of (3.1.10) we have, writing E, for E
to make explicit the dependence on v,

E,[p]=Tl[p] + V..[p] + V..lp]
= I p(r)u(r) dr + Fuk|p]

where
Flpl=Tlp] + Velp]
We may write |
V..lp] =J[p] + nonclassical term

Jlpl= ; 1 P(l'l)P(l'z) dr; dr,
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The Hohenberg-Kohn theorems

The second Hohenberg—Kohn theorem (Hohenberg and Kohn 1964)
provides the energy variational principle. It reads: For a trial density p(r),
such that p(r)=0 and | p(x) dr= N,

E,<E,[p] (3.2.6)

where E,[p] is the energy functional of (3.2.3). This is analogous to the
variational principle for wave functions, (1.2.3). It provides the justifica-
tion for the variational principle in Thomas—Fermi theory in that Eg[p]
is an approximation to E[p].

(9| A 19) = [ pEu(e) dr + Fuelp] = E,[5)> E.lp]
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The Hohenberg-Kohn theorems

(9| 8 1%) = [ pEv(r) dr + Fulp] = E.[5] = E.[p]

Assuming differentiability of E,[p], the variational principle (3.2.6)
requires that the ground-state density satisfy the stationary principle

6{E,,[p]—uU p(r) dr--—-N]}:O (3.2.8)
which gives the Euler-Lagrange equation
OE,[p] 6Fuk[p]
= =vu(r) + 3.2.9
H=0m "0t Topm) (3.29)




The Hohenberg-Kohn theorems

If we knew the exact Fyk[p], (3.2.8) would be an exact equation for
the ground-state electron density. Note that Fyi[p] of (3.2.4) is defined
independently of the external potential v(r); this means that Fug[p] is a
universal functional of p(r). Once we have an explicit form (approximate
or accurate) for Fyg[p], we can apply this method to any system.
Equation (3.2.9) is the basic working equation of density-functional

theory.
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The Hohenberg-Kohn theorems

Accurate calculational implementations of the density-functional
theory are far from easy to achieve, because of the unfortunate (but
challenging) fact that the functional Fyk[p] is hard to come by in explicit
form. We will say a great deal more about these matters in subsequent
chapters. Suffice it here to emphasize that the very existence of the exact
theory provides impetus both to work to advance the calculational
procedures to higher and higher accuracy and also to strive to develop
the conceptual consequences. In this reformulation of wave mechanics,
the electron density, and only the electron density, plays the key role,
and that emphatically bodes well for simple descriptive consequences.
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The v- and N-representability of an electron density

) N N N 1
A= (-3VH+ D v(m) + 2 —
i=1 i=1

i<j Tij

A density Is v-representable if it Is the density associated with the
antisymmetric ground-state wave function with some external
potential v(r) (not necessarily a Coulomb potential).

A density Is N-representable if it can be obtained from some
antisymmetric wave function.




The v- and N-representability of an electron density

The first Hohenberg-Kohn theorem:

There Is a one-to-one mapping between ground-state wave
functions and v-representable electron densities. It Is through
this unique mapping a v-representable density determines
the properties of its associated ground state.

Of particular importance is the functional F[p]
Faxlp] = (¥ T+V, W)

where W is the ground-state wave function associated
with p, which has to be v-representable.
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The v- and N-representability of an electron density

The second Hohenberg—Kohn theorem simply states that for all
v-representable densities,

E[p]=Fulo] + [ v()p(®) dr= E, po (332)

where E,[po] is the ground-state energy of the Hamiltonian with v(r) as
external potential, and p, is its ground-state density.

What if a trial density is not v-representable?
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The v- and N-representability of an electron density

The N-representability condition is satisfied for any reasonable density.
More mathematically stated, a density p(r) is N-representable if

p(r)=0, f p(r)dr=N, and f Vo (r)"?|* dr < .

This was first shown by Gilbert (1975), who exhibited how one can
represent such p in terms of N orthonormal orbitals based on a space
partitioning (and hence generate p from a single-determinantal wave
function); see also the proof of Lieb (1982).
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The v- and N-representability of an electron density
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The Levy constrained-search formulation

Having established in the last two sections the one-to-one correspon-
dence between ground-state electron density po(r) and the ground-state
wave function W, we now proceed to show how one in fact can
determine ¥, from a given po(r). (Here subscripts have been given to W
and p to emphasize their ground-state nature.)

The inverse of this problem is trivial: ¥, gives py(r) by quadrature. But
there exist an infinite number of antisymmetric wave functions (not
necessarily from ground states) that all give the same density. Given one
of these functions that integrates to p,, say W,,, how do we distinguish it
from the true ground-state W?
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The minimum-energy principle for the ground state gives
(¥, H 1w, = (WY, H W) = E,

where H=T+V,_+ Y.Yvu(r;), the Hamiltonian for the N-electron

system. Since the potential energy due to the external field v(r) is a
simple functional of density, we therefore have

(Wl T+ Ve 19,,) + [ 0(E)pole) de = (Wol T+ Ve [%6) + [w0)p0r) i

Thus, o o
(Wool T+ Vee [Wp) = (Wol T + Vee W) (3.4.3)

and we conclude that among all the wave functions giving the same
ground-state density po, the ground state ¥, minimizes the expectation

value (T+V,).
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The Levy constrained-search formulation

Fax[pol = (Wol T + V., | W)
= Min (¥| T + V,, |¥) (3.4.4)

¥—pq

This is a constrained-search definition for the density functional Fyk[po]-
Searching over all the antisymmetric wave functions that yield the input
density po, Fuk[po] delivers the minimum expectation value of (T + V.e).

Defining Fyk[po] by (3.4.4) not only provides a new proof for the first
theorem of Hohenberg and Kohn, but also eliminates the original
Hohenberg—Kohn limitation that there be no degeneracy in the ground
state. For in the constrained search, only one of a set of degenerate wave
functions is selected, the one corresponding to p,.
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Constrained-search
formulation
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In the constrained-search formula for Fyg[pe], that is, the second
equality in (3.4.4), there is no need to make reference to the fact that p,
is a v-representable ground-state density, so long as it comes from an
antisymmetric wave function. This permits one to extend the domain of
definition for Fyx[pe] from v-representable densities to N-representable
densities. Define

Flp]=Min {(¥| T + V,, |¥) (3.4.5)
Y—p

for any p that is N-representable. The functional F[p] searches all ¥ that
yield the input density p(r) and then delivers the minimum of (7 + V,,).
It follows from (3.4.4) and (3.4.5) that

Fux[po] = F[po] (3.4.6)

for any p, that is v-representable.
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The Levy constrained-search formulation

Eo = Min (P T+V, + 2 u(r;) |¥)

= Min {Mm (W T+ V.. + 2 v(r;) }‘I’)}

p W—op

= Ngn ﬁ Min {(\P\ T+V, W)+ f v(r)p(r) dr”

L‘I’—*.O

= Mgn {F[p] + f v(r)p(r) dr}

P
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Constrained-search
formulation
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The Levy constrained-search formulation

E,= Mpin {F[p] + f v(r)p(r) dr}

= Min E[p]
P

" The variation in (3.4.8) is over all N-representable densities; it requires
no more than the nonnegativity, proper normalization, and continuity of
the trial densities [cf. (3.3.3)]. This makes the minimization in (3.4.7)
easier to carry out than the original Hohenberg—Kohn minimization of
(3.3.2). The v-representability problem in the original approach has been

eliminated.
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