The kohn-Sham method: Elaboration

Density-Functional Theory of Atoms and Molecules – Robert G. Parr and Weitao Yang

Chapter 8

Perspective: Fifty years of density-functional theory in chemical physics

Cite as: J. Chem. Phys. 140, 18A301 (2014); https://doi.org/10.1063/1.4869598 Submitted: 21 January 2014 . Accepted: 13 March 2014 . Published Online: 01 April 2014

Axel D. Becke

Local density approximation

$$
E_{xc}^{\text{LDA}}[\rho] = \int \rho(\mathbf{r}) \varepsilon_{xc}(\rho) d\mathbf{r}
$$

$$
v_{xc}^{\text{LDA}}(\mathbf{r}) = \frac{\delta E_{xc}^{\text{LDA}}}{\delta \rho(\mathbf{r})} = \varepsilon_{xc}(\rho(\mathbf{r})) + \rho(\mathbf{r}) \frac{\delta \varepsilon_{xc}(\rho)}{\delta \rho}
$$

$$
\left[-\frac{1}{2}\nabla^2 + v(\mathbf{r}) + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + v_{xc}^{\text{LDA}}(\mathbf{r})\right]\psi_i = \varepsilon_i \psi_i.
$$

Local density approximation

$$
\varepsilon_{xc}(\rho) = \varepsilon_x(\rho) + \varepsilon_c(\rho) \qquad \qquad \varepsilon_x(\rho) = -C_x\rho(\mathbf{r})^{1/3}, \qquad C_x = \frac{3}{4}\left(\frac{3}{\pi}\right)^{1/3}
$$

$$
\varepsilon_c(r_s) = \frac{A}{2} \left\{ \ln \frac{x}{X(x)} + \frac{2b}{Q} \tan^{-1} \frac{Q}{2x + b} - \frac{bx_0}{X(x_0)} \left[\ln \frac{(x - x_0)^2}{X(x)} + \frac{2(b + 2x_0)}{Q} \tan^{-1} \frac{Q}{2x + b} \right] \right\}
$$
 (E.27)

where $x = r_s^{1/2}$, $X(x) = x^2 + bx + c$, and $Q = (4c - b^2)^{1/2}$. For $\varepsilon_c^0(r_s)$, $A = 0.0621814$, $x_0 = -0.409286$, $b = 13.0720$, and $c = 42.7198$; for $\varepsilon_c^1(r_s)$, $A = \frac{1}{2}(0.0621814), x_0 = -0.743294, b = 20.1231, and c = 101.578.$ These formulas are generally accepted as the most accurate available for the uniform-gas correlation energy per particle.

In the presence of a magnetic field $B(r)$ that acts only on the spins of the electrons, the Hamiltonian of the system becomes

$$
\hat{H} = -\frac{1}{2} \sum_{i}^{N} \nabla_i^2 + \sum_{i < j}^{N} \frac{1}{r_{ij}} + \sum_{i}^{N} v(\mathbf{r}_i) + 2\beta_e \sum_{i}^{N} \mathbf{B}(\mathbf{r}) \cdot \mathbf{s}_i \tag{8.1.1}
$$

where $\beta_e = e\hbar/2mc$ is the Bohr magneton and s_i is the electron spin angular momentum vector for the *i*th electron (Levine 1983, p. 285).

$$
\hat{V} = \sum_{i}^{N} v(\mathbf{r}_{i}) + 2\beta_{e} \sum_{i}^{N} \mathbf{B}(\mathbf{r}_{i}) \cdot \mathbf{s}_{i}
$$

$$
= \int v(\mathbf{r}) \hat{\rho}(\mathbf{r}) d\mathbf{r} - \int \mathbf{B}(\mathbf{r}) \cdot \hat{\mathbf{m}}(\mathbf{r}) d\mathbf{r}
$$

$$
\hat{\mathbf{m}}(\mathbf{r}) = -2\beta_e \sum_{i}^{N} \mathbf{s}_i \,\delta(\mathbf{r} - \mathbf{r}_i)
$$

 $\rho(\mathbf{r}) = \langle \Psi | \hat{\rho}(\mathbf{r}) | \Psi \rangle$

 $\mathbf{m}(\mathbf{r}) = \langle \Psi | \hat{\mathbf{m}}(\mathbf{r}) | \Psi \rangle$

$$
\langle \Psi | \hat{V} | \Psi \rangle = \int v(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r} - \int \mathbf{B}(\mathbf{r}) \cdot \mathbf{m}(\mathbf{r}) d\mathbf{r}
$$

$$
\langle \Psi | \hat{V} | \Psi \rangle = \int v(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r} - \int b(\mathbf{r}) m(\mathbf{r}) d\mathbf{r}
$$

We shall discuss only the simple case of *z*-direction *b*(**r**)

$$
m(\mathbf{r}) = -2\beta_e \langle \Psi | \sum_{i}^{N} s_z(i) \delta(\mathbf{r} - \mathbf{r}_i) | \Psi \rangle
$$

= $-2\beta_e \int s_z \delta(\mathbf{r} - \mathbf{r}') \gamma_1(\mathbf{x}', \mathbf{x}') d\mathbf{x}'$
= $-2\beta_e \sum_{s = \alpha, \beta} s_z \gamma_1(\mathbf{r}s, \mathbf{r}s)$
= $-2\beta_e [\frac{1}{2}\gamma_1(\mathbf{r}\alpha, \mathbf{r}\alpha) + (-\frac{1}{2})\gamma_1(\mathbf{r}\beta, \mathbf{r}\beta)]$
= $\beta_e [\rho^{\beta}(\mathbf{r}) - \rho^{\alpha}(\mathbf{r})]$

$$
E_0 = \min_{\Psi} \left\{ \Psi | \hat{T} + \hat{V}_{ee} + \sum_{i}^{N} v(\mathbf{r}_i) + 2\beta_e \sum_{i}^{N} b(\mathbf{r}_i) \cdot \mathbf{s}_z(i) | \Psi \right\}
$$

=
$$
\min_{\rho^{\alpha}, \rho^{\beta}} \left\{ \min_{\Psi \to \rho^{\alpha}, \rho^{\beta}} \left\{ \Psi | \hat{T} + \hat{V}_{ee} | \Psi \right\} + \int \left[v(\mathbf{r}) \rho(\mathbf{r}) - b(\mathbf{r}) m(\mathbf{r}) \right] d\mathbf{r} \right\}
$$

=
$$
\min_{\rho^{\alpha}, \rho^{\beta}} \left\{ F[\rho^{\alpha}, \rho^{\beta}] + \int d\mathbf{r} [(v(\mathbf{r}) + \beta_e b(\mathbf{r})) \rho^{\alpha}(\mathbf{r}) + (v(\mathbf{r}) - \beta_e b(\mathbf{r})) \rho^{\beta}(\mathbf{r})] \right\}
$$

where

$$
F[\rho^{\alpha}, \rho^{\beta}] = \min_{\Psi \to \rho^{\alpha}, \rho^{\beta}} \langle \Psi | \hat{T} + \hat{V}_{ee} | \Psi \rangle
$$

The Kohn–Sham method can now be introduced to rigorously handle the kinetic-energy contribution to $F[\rho^{\alpha}, \rho^{\beta}]$. In the manner of (7.1.13), define

$$
F[\rho^{\alpha}, \rho^{\beta}] = T_s[\rho^{\alpha}, \rho^{\beta}] + J[\rho^{\alpha} + \rho^{\beta}] + E_{xc}[\rho^{\alpha}, \rho^{\beta}] \qquad (8.1.12)
$$

where $T_s[\rho^\alpha, \rho^\beta]$ is the Kohn–Sham kinetic-energy functional corresponding to a system of noninteracting electrons with densities ρ^{α} and ρ^{β} , and $E_{xc}[\rho^{\alpha}, \rho^{\beta}]$ is the exchange-correlation-energy functional.

$$
T_s[\rho^{\alpha}, \rho^{\beta}] = \text{Min}\left[\sum_{i\sigma} n_{i\sigma} \int d\mathbf{r} \phi_{i\sigma}^*(\mathbf{r}) (-\frac{1}{2}\nabla^2) \phi_{i\sigma}(\mathbf{r})\right]
$$

$$
\overline{\sum_i n_{i\alpha} |\phi_{i\alpha}(\mathbf{r})|^2} = \rho^{\alpha}(\mathbf{r}), \qquad \sum_i n_{i\beta} |\phi_{i\beta}(\mathbf{r})|^2 = \rho^{\beta}(\mathbf{r})
$$

$$
T_s[\rho^{\alpha},\rho^{\beta}] = \sum_{i\sigma} n_{i\sigma} \int d\mathbf{r} \phi_{i\sigma}^*(\mathbf{r}) (-\frac{1}{2}\nabla^2) \phi_{i\sigma}(\mathbf{r})
$$

$$
E[\rho^{\alpha}, \rho^{\beta}] = \sum_{i\sigma} n_{i\sigma} \int d\mathbf{r} \phi_{i\sigma}^{*}(\mathbf{r}) (-\frac{1}{2}\nabla^{2}) \phi_{i\sigma}(\mathbf{r}) + J[\rho^{\alpha} + \rho^{\beta}] + E_{xc}[\rho^{\alpha}, \rho^{\beta}]
$$

+
$$
\int d\mathbf{r} [(v(\mathbf{r}) + \beta_{e}b(\mathbf{r}))\rho^{\alpha}(\mathbf{r}) + (v(\mathbf{r}) - \beta_{e}b(\mathbf{r})\rho^{\beta}(\mathbf{r}))]
$$
(8.1.16)

The variational search for the minimum of $E[\rho^{\alpha}, \rho^{\beta}]$ can then be carried out through orbitals, subject to normalization constraints:

$$
\phi_{i\sigma}(\mathbf{r})\phi_{i\sigma}(\mathbf{r}) d\mathbf{r} = 1
$$
 (8.1.17)

The resulting Kohn–Sham equations are $\hat{h}^{\alpha}_{\text{eff}}\phi_{i\alpha}(\mathbf{r}) = \left[-\frac{1}{2}\nabla^2 + v^{\alpha}_{\text{eff}}(\mathbf{r})\right]\phi_{i\alpha}(\mathbf{r})$ $=\frac{\varepsilon'_{i\alpha}}{n_{i\alpha}}\phi_{i\alpha}(\mathbf{r})=\varepsilon_{i\alpha}\phi_{i\alpha}(\mathbf{r}), \qquad i=1, 2, ..., N^{\alpha}$ $\hat{h}^{\beta}_{\text{eff}}\phi_{i\beta}(\mathbf{r}) = \left[-\frac{1}{2}\nabla^2 + v^{\beta}_{\text{eff}}(\mathbf{r})\right]\phi_{i\beta}(\mathbf{r})$ $=\frac{\varepsilon'_{j\beta}}{n_{i\beta}}\phi_{j\beta}(\mathbf{r})=\varepsilon_{j\beta}\phi_{j\beta}(\mathbf{r}), \qquad j=1, 2, ..., N^{\beta}$ $N^{\alpha} = \int d\mathbf{r} \rho^{\alpha}(\mathbf{r}), \qquad N^{\beta} = \int d\mathbf{r} \rho^{\beta}(\mathbf{r}) \qquad N = N^{\alpha} + N^{\beta}$

where the spin-dependent effective potentials are

$$
v_{\text{eff}}^{\alpha} = v(\mathbf{r}) + \beta_e b(\mathbf{r}) + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \frac{\delta E_{xc}[\rho^{\alpha}, \rho^{\beta}]}{\delta \rho^{\alpha}(\mathbf{r})}
$$

$$
v_{\text{eff}}^{\beta} = v(\mathbf{r}) - \beta_e b(\mathbf{r}) + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \frac{\delta E_{xc}[\rho^{\alpha}, \rho^{\beta}]}{\delta \rho^{\beta}(\mathbf{r})}
$$

$$
N^{\alpha} = \int d\mathbf{r} \rho^{\alpha}(\mathbf{r}), \qquad N^{\beta} = \int d\mathbf{r} \rho^{\beta}(\mathbf{r}) \qquad N = N^{\alpha} + N^{\beta}
$$

$$
T_s[\rho^{\alpha},\rho^{\beta}] = \sum_{i\sigma} n_{i\sigma} \int d\mathbf{r} \phi_{i\sigma}^*(\mathbf{r}) (-\frac{1}{2}\nabla^2) \phi_{i\sigma}(\mathbf{r})
$$

$$
T_s[\rho^\alpha, \rho^\beta] = T_s[\rho^\alpha, 0] + T_s[0, \rho^\beta]
$$

$$
T_s[\rho^{\alpha}, 0] = \sum_{i\alpha} n_{i\alpha} \int d\mathbf{r} \, \phi_{i\alpha}^*(\mathbf{r}) (-\frac{1}{2}\nabla^2) \phi_{i\alpha}(\mathbf{r})
$$

$$
\rho^{\alpha}(\mathbf{r}) = \rho^{\beta}(\mathbf{r}) = \frac{1}{2}\rho(\mathbf{r})
$$

$$
T_s[\frac{1}{2}\rho, \frac{1}{2}\rho] = T_s[\frac{1}{2}\rho, 0] + T_s[0, \frac{1}{2}\rho]
$$

= $2T_s[\frac{1}{2}\rho, 0]$

$$
\rho^{\alpha}(\mathbf{r}) = \rho^{\beta}(\mathbf{r}) = \frac{1}{2}\rho(\mathbf{r})
$$

$$
T_s[\frac{1}{2}\rho, 0] = T_s[0, \frac{1}{2}\rho]
$$

$$
T_s^0[\rho] = T_s[\frac{1}{2}\rho, \frac{1}{2}\rho]
$$

$$
T_s[\rho^\alpha, \rho^\beta] = T_s[\rho^\alpha, 0] + T_s[0, \rho^\beta]
$$

$$
T_{s}[\rho^{\alpha},\,\rho^{\beta}]=\tfrac{1}{2}T_{s}^{0}[2\rho^{\alpha}]+\tfrac{1}{2}T_{s}^{0}[2\rho^{\beta}]
$$

With the spin-polarized Kohn–Sham equations of §8.1, the kinetic energy is handled exactly and only the exchange-correlation energy remains to be determined. The exchange-correlation contribution can be separated into exchange and correlation pieces:

$$
E_{xc}[\rho^{\alpha}, \rho^{\beta}] = E_x[\rho^{\alpha}, \rho^{\beta}] + E_c[\rho^{\alpha}, \rho^{\beta}] \qquad (8.2.11)
$$

where the exchange part is defined from $(2.5.24)$ as

$$
E_x[\rho^\alpha, \rho^\beta] = -\frac{1}{2} \int \int \frac{1}{r_{12}} [|\rho_1^{\alpha\alpha}(\mathbf{r}_1, \mathbf{r}_2)|^2 + |\rho_1^{\beta\beta}(\mathbf{r}_1, \mathbf{r}_2)|^2] d\mathbf{r}_1 d\mathbf{r}_2
$$

$$
E_x[\rho^{\alpha}, \rho^{\beta}] = -\frac{1}{2} \int \int \frac{1}{r_{12}} [|\rho_1^{\alpha\alpha}(\mathbf{r}_1, \mathbf{r}_2)|^2 + |\rho_1^{\beta\beta}(\mathbf{r}_1, \mathbf{r}_2)|^2] d\mathbf{r}_1 d\mathbf{r}_2
$$

$$
\rho_1^{\alpha\alpha}(\mathbf{r}_1, \mathbf{r}_2) = \sum_i n_{i\alpha} \phi_{i\alpha}(\mathbf{r}_1) \phi_{i\alpha}^*(\mathbf{r}_2)
$$

$$
\rho_1^{\beta\beta}(\mathbf{r}_1, \mathbf{r}_2) = \sum_i n_{i\beta} \phi_{i\beta}(\mathbf{r}_1) \phi_{i\beta}^*(\mathbf{r}_2)
$$

$$
E_x[\rho^\alpha, \rho^\beta] = \frac{1}{2} E_x[\rho^\alpha, \rho^\alpha] + \frac{1}{2} E_x[\rho^\beta, \rho^\beta]
$$

$$
= \frac{1}{2} E_x^0[2\rho^\alpha] + \frac{1}{2} E_x^0[2\rho^\beta]
$$

$$
E_x^0[\rho] = E_x[\frac{1}{2}\rho, \frac{1}{2}\rho]
$$

$$
E_x^{\text{LSD}}[\rho^{\alpha}, \rho^{\beta}] = 2^{1/3} C_x \int [(\rho^{\alpha})^{4/3} + (\rho^{\beta})^{4/3}] dr
$$

Local spin-density approximation (LSD)

Define the spin polarization parameter ζ by

$$
\xi = \frac{\rho^{\alpha} - \rho^{\beta}}{\rho} = \frac{\rho^{\alpha} - \rho^{\beta}}{\rho^{\alpha} + \rho^{\beta}}
$$

Then $\rho^{\alpha} = \frac{1}{2}(1 + \zeta)\rho$, $\rho^{\beta} = \frac{1}{2}(1 - \zeta)\rho$, and the LSD exchange energy becomes

$$
E_x^{\text{LSD}}[\rho^{\alpha}, \rho^{\beta}] = \frac{1}{2}C_x \int \rho^{4/3} [(1+\zeta)^{4/3} + (1-\zeta)^{4/3}] d\mathbf{r}
$$

= $\int \rho \varepsilon_x(\rho, \zeta) d\mathbf{r}$ (8.2.18)

where

$$
\varepsilon_x(\rho, \zeta) = \varepsilon_x^0(\rho) + [\varepsilon_x^1(\rho) - \varepsilon_x^0(\rho)]f(\zeta)
$$
 (8.2.19)

with the exchange density for the spin-compensated ("paramagnetic") homogeneous electron gas given by

$$
\varepsilon_x^0(\rho) = \varepsilon_x(\rho, 0) = C_x \rho^{1/3} \tag{8.2.20}
$$

for spin-completely-polarized ("ferromagnetic") homogeneous electron gas

$$
\varepsilon_x^1(\rho) = \varepsilon_x(\rho, 1) = 2^{1/3} C_x \rho^{1/3}
$$
 (8.2.21)

and

$$
f(\zeta) = \frac{1}{2}(2^{1/3} - 1)^{-1}[(1 + \zeta)^{4/3} + (1 - \zeta)^{4/3} - 2]
$$
 (8.2.22)

The LSD exchange energy density was originally cast in the form (8.2.19) by von Barth and Hedin (1972); the quantity $f(\zeta)$ serves as a weight factor between the two extreme cases $\zeta = 0$ and $\zeta = 1$.

Atom	LSD	LDA	HF	Exptl.
$\bf H$	13.4	12.0		13.6
He	24.5	26.4		24.6
Li	5.7	5.4	5.3	5.4
Be	9.1		8.0	9.3
B	8.8		7.9	8.3
$\mathbf C$	12.1		10.8	11.3
N	15.3		14.0	14.5
O	14.2	16.5	11.9	13.6
F	18.4		16.2	17.4
Ne	22.6	22.5	19.8	21.6
Na	5.6	5.3	4.9	5.1
Ar	16.2	16.1	14.8	15.8
K	4.7	4.5	4.0	4.3

Table 8.1 Ionization Potentials in electron volts of Some Light Atoms Calculated in the LSD, LDA, and HF Approximations

Note: LSD = local spin-density method; LDA = local-density approximation; $HF = Hartree - Fock$.

Table 8.2 LSD Spectroscopic Constants for Diatomic Molecules^a

More to read

- Self-interaction correction
- The exchange-correlation-energy functional via the exchange-correlation hole
- The exchange-correlation-energy functional via wave-vector analysis

MOLECULAR PHYSICS, 2017 VOL. 115, NO. 19, 2315-2372 https://doi.org/10.1080/00268976.2017.1333644

TOPICAL REVIEW

Taylor & Francis

Check for updates

a OPEN ACCESS

Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals

Narbe Mardirossian^a and Martin Head-Gordon^{a, b}

^a Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA; ^bChemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Generalized gradient approximation (GGA)

$$
E_x^{\text{GGA}}[\rho] = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} \int d\mathbf{r} \, \rho^{4/3} F(s)
$$

$$
s = \frac{|\nabla \rho(r)|}{(2k_F \rho)}
$$

$$
k_F = (3\pi^2\rho)^{1/3}
$$

$$
F(s) = (1 + 1.296s^2 + 14s^4 + 0.2s^6)^{1/15}
$$

Table 8.5 Exchange Energies E_x of Neutral Atoms Calculated from Nonrelativistic Hartree–Fock Densities^{a,b}

 \degree From Perdew and Yue (1986).

 b LSD is the local spin density formula of (8.2.16), IM is the Langreth-Mehl formula of $(8.6.21)$, GGA is the Perdew-Yue formula $(8.7.1)$.

I.U.N. Lone et al., Vacuum 191 (2021) 110328

A. Anjami et al.: Results Phys. 7 (2017) 3522–3529

Plasmons, Polaritons, Polarons and Phonons: Dielectric function of the electron gas, Dispersion relation for electromagnetic waves, Plasma oscillations, Plasmons, Electrostatic screening, Screening & phonons in metals, Polaritons and L.S.T relation, Electron-electron interaction, polaron and electron phonon interaction.

Introduction To Solid State Physics – Charles Kittel

