
1. Thomas-Fermi method

We consider a system of N electrons in a stationary state, that would obey the stationary
Schrödinger equation:
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Ψ(r1, . . . , rN) = EiΨ(r1, . . . , rN) . (1.1)

We would try to avoid the complication of searching for the many-electron wavefunction
Ψ(r1, . . . , rN), concentrating on an electron density ρ(r) instead. The electron density
is a physical observable, it can be measured, calculated and easily visualized. For just
one particle with its corresponding wavefunction ϕ(r), the density is simply a probability
amplitude to find a particle near a certain position in space; it reads

ρ(r) = ϕ∗(r) ϕ(r) . (1.2)

For a system with N particles, the definition of the density is the following,

ρ(r) = N
∫

Ψ∗(r, r2, . . . , rN)Ψ(r, r2, . . . , rN)dr2 . . . drN , (1.3)

i.e., the probability amplitude to find any particle near the position r in space. In prin-
ciple, one can attempt to solve the equation (1.1) iteratively (subject to certain approx-
imations), i.e. the electron density will be determined by Ψ({r}) and affect, in its turn,
the Coulomb potential in Eq.(1.1), and so on till self-consistency. But the essence of the
Tomas-Fermi method is to circumvent the discussion of the wavefunction Ψ completely,
concentrating on the density ρ(r) as a basic variable to search for.

1.1 Deriving the equation...

The approach has been proposed independently by L. Thomas and E. Fermi in 1927.1 The
Thomas-Fermi approach is semi-classical, i.e., certain ideas will be borrowed from quan-
tum mechanics, but otherwise one operates with normal functions instead of quantum-
mechanical operators. The condition for the semi-classical approach to be applicable
is that spatial variations of the de Broglie wavelength in a system in question must be
small. Specifically, we’ll consider momentum p as a spatial function (instead of quantum-
mechanical operator) and introduce wave number k(x) = 1/h̄p(x) (as a function of
any spatial coordinate x), then de Broglie wavelength λ(x) = 1/k(x), everything being
position-dependent, and the condition for the semi-classical approach to be valid reads
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1L. H. Thomas, Proc. Camb. Phil. Soc. 23, 542 (1927); E. Fermi, Rend. Acad. Maz. Lancei 6, 602
(1927). The method has been since then decribed in many textbooks. For a relatively recent useful
review article which covers the history, improvements and applications, see: Larry Spruch, Pedagogic
notes on Thomas-Fermi theory (and on some improvements): atoms, stars, and the stability of bulk
matter, Rev. Mod. Phys. 63, No.1 (Jan. 1991), pp. 151–209.
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From quantum mechanics, one retains two elements:
• the Fermi statistics; all the states up to those with some maximum energy and hence
momentum pF – that may vary over space – are occupied;
• the uncertainty principle; every cell in the phase space of volume h3 may host up to 2
electrons with opposite spin directions.

In the ground state, assuming first that pF over a volume V , one counts the number
of electrons N :
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hence (uniform) electron density is

ρ =
N

V
=

8π

3h3
p3

F , (1.6)

or, inverting it:

pF =

[

3h3

8π
ρ

]1/3

. (1.7)

In the following, we assume that both ρ and pF are dependent on r, but so that the
quasi-classsical condition (1.4) holds.

We assume that all electrons move as classical particles in a common potential field
V (r). The classical energy for the fastest electron will be

Emax. =
p2

F(r)

2m
+ V (r) , (1.8)

Whereas both kinetic and potential parts may independently depend on r, their sum –
at least in equilibrium – must remain constant. Otherwise the electrons will flow from
regions with higher maximal energy till Emax. becomes the same everywhere. Substituting
Eq. (1.7) into (1.8) yields:

Emax. =
1

2m

[

3h3

8π

]2/3

ρ2/3 + V (r) , (1.9)

Now, we consider the total energy of the whole electron distribution and in it – kinetic
and potential energy parts. With the kinetic energy density t, the kinetic energy T can
be recovered as T =

∫

t(r)dr.
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T

V
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·
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0
p4dp =

8π

2mh3
·
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F

5
. (1.10)

Substituting (1.7) into (1.10) yields:

t =
8π

2mh3
·
1

5

[

3h3

8π
ρ(r)

]5/3

=
3h2

10m

(
3

8π

)2/3

︸ ︷︷ ︸

CK

[ρ(r)]5/3 . (1.11)
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The potential energy is due to the interaction with external field Vext.(r) and electrostatic
interaction of the electron density with itself:

U = e
∫

ρ(r) Vext.(r) dr +
1

2
e2
∫

ρ(r)ρ(r′)

|r − r′|
drdr′ . (1.12)

Then the total energy of the electron system is:

Etot = CK

∫

[ρ(r)]5/3 dr + e
∫

ρ(r)Vext.(r)dr +
1

2
e2
∫

ρ(r)ρ(r′)

|r − r′|
drdr′ . (1.13)

We search in the following for such distribution of the electron density that would minimize
the total energy, subject to the condition of normalization

∫

ρ(r)dr = N : (1.14)

δ (Etot. − µN) = 0 , (1.15)

introducing a Lagrange multiplier µ. A variation with respect to ρ(r) yields:

δ (Etot.−µN) =
∫
{

5

3
CK [ρ(r)]2/3 + eVext.(r) + e2

∫
ρ(r′)

|r − r′|
dr′ − µ

}

δρ(r)dr = 0

→
5

3
CK [ρ(r)]2/3 + eVext.(r) + e2

∫
ρ(r′)

|r− r′|
dr′ = µ , (1.16)

that is the Thomas-Fermi equation that determins the equilibrium distribution of the
electron density.

Comparing with Eq.(1.9) and taking into account that two last terms on the left side
represent the potential energy, we see that µ is the classical energy of the fastest electron,
that could be identified with the Fermi energy. On the other side, it follows from Eq.(1.15)
that µ = ∂Etot./∂N , i.e. µ has the meaning of the chemical potential.

Eq. (1.16) is the Thomas-Fermi equation for ρ(r) in integral form. Due to the relation
between ρ and pF, it can be formulated as that on pF, or kF:

ρ1/3(r) = pF

(
8π

3h3

)1/3

=
1

(3π2)1/3
·
pF

h̄
=

1

(3π2)1/3
kF .

With this, Eq. (1.16) transforms into:

5

3
CK

1

(3π2)2/3
k2

F(r) + eVext.(r) +
e2

3π2

∫
k3

F(r′)

|r − r′|
dr′ = µ , (1.17)

or
pF(r)

2m
+ eVext.(r) +

e2

3π2

∫
k3

F(r′)

|r − r′|
dr′ = µ .

One can transform the Tomas-Fermi equation in the integral form (1.16) into a differential
form. The function to search for will be the electrostatic potential generated by ρ(r). We
introduce this potential as

u(r) = e
∫ ρ(r′)

|r − r′|
dr′ ,
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it must satisfy the Poisson equation:

∆u(r) = −4πeρ(r) . (1.18)

From Eq.(1.16) one extracts the electron density,

ρ(r) =
(

3

5CK

)3/2

[µ − eVext.(r) − eu(r)]3/2 , (1.19)

and with (1.18) it follows:

∆u(r) = −4πe
(

3

5CK

)3/2

[µ − eVext.(r) − eu(r)]3/2

= −
32π2e

3h3
(2m)3/2 [µ − eVext.(r) − eu(r)]3/2 . (1.20)

This is the Thomas-Fermi equation in differential form.

1.2 Thomas-Fermi atom

Let us consider a neutral Thomas-Fermi atom as an example. Then we have

N = Z; Vext.(r) = −
eZ

r
⇒ ∆Vext.(r) = 4πeZδ(r) .

The energy-minimizing solution of the Thomas-Fermi equation is unique (without proof);
we’ll seqrch for a spherically symmetric solution that will be the solution. Combining
extrenal field (of nucleus) and Coulomb field created by the electron density into Veff(r);

Veff(r) = Vext.(r) + u(r); ∆Veff(r) = 4πeZδ(r) + ∆u(r) .

For r → ∞, ρ(r) → 0, then the Coulomb potential created by spherically symmetric

and neutral charge distribution falls down to zero. In Eq.(1.19) all terms approach 0 as
r → ∞, then µ = 0 at infinity, hence µ = 0 everywhere in the equilibrium. Eq. (1.20)
becomes:

∆Veff(r) − 4πeZδ(r) = −
32π2e

3h3
(2m)3/2 [−eVeff(r)]3/2

−∆Veff(r) =
32π2e

3h3
(2m)3/2 [−eVeff(r)]

3/2 − 4πeZδ(r) . (1.21)

The δ-function takes care of boundary conditions, Veff(r) → −Z/r for r → 0, the other
boundary condition is Veff(r) → 0 for r → ∞, with this the solution of Veff(r) is unique.
For r 6= 0, the equation to solve is

−
1

r

d2

dr2
rVeff(r) =

32π2e

3h3
(2m)3/2 e3/2 [−Veff(r)]

3/2 . (1.22)
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With the ansatz Veff(r) = −Z/rχ(αr) Eq.(1.22) transforms into:

Zα3

x

d2χ(x)

dx2
=

(
Zα

x

)3/2 32π2 e

3h3
(2me)3/2 [χ(x)]3/2 ;

d2χ(x)

dx2
=

(
Z

x

)1/2

α−3/2 32π2e

3h3
(2me)3/2 [χ(x)]3/2

d2χ(x)

dx2
=

1

x1/2

[

Z1/2 32π2e

3h3
(2me)3/2 α−3/2

]

︸ ︷︷ ︸

= 1

[χ(x)]3/2 . (1.23)

The square bracket can be set to 1 if we choose

α =

(

32π2e

3h3

)2/3

· 2me Z1/3 , (1.24)

then one arrives so at the universal form of the Thomas-Fermi equation that allows to
scale the solution for arbitrary Z and defines χ(x), the universal Thomas-Fermi function.
Let us discuss the asymptotic of the solution. If we assume Veff to behave as

Veff ∼ r−ν for r → ∞, then −
1

r

d2

dr2
rVeff ∼ r−(ν+2) ;

on the other side, [−Veff(r)]
3/2 ∼ r−3ν/2 , hence ν + 2 = 3ν/2 ⇒ ν = 4 .

Then ρ(r) ∼ ∆Veff(r) ∼ [−Veff(r)]
3/2 ⇒ ∼ r−6 .

For r → 0, Veff(r) ∼ −
Z

r
and ρ(r) ∼ r−3/2 .

We summarize below essential properties of a Thomas-Fermi atom:

• There is a solution for neutral or positively charged ion (no bounded solution for
negative ions).

• Asymptotic is wrong: ρ(r) ∼ r−6 for r → ∞, in reality ρ(r) ∼ exp(−r).
ρ(r) ∼ r−3/2 (diverges) for r → 0, in reality: ρ(0) is finite.

• Total energy is too low, especially for light atoms2

• No shell structure of an atom appears.

• There is no chemical binding, the total energy of two close (interacting) atoms is
never lower than that of two distant atoms (the Taylor theorem3).

• But: the theory is asymptotically exact for N → ∞.

2by 54% for hydrogen, by 35% for helium, by ≈15% for heavy elements (Z ≈ 100).
3Edward Teller, On the Stability of Molecules in the Thomas-Fermi Theory, Rev. Mod. Phys. 34,

No. 4, 627–631 (Oct. 1962)
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1.3 Corrections to the Thomas-Fermi equation

1.3.1 Exchange (Thomas-Fermi-Dirac)

So far, we considered only electrostatic interaction of each electron with the whole back-
ground charge. What is wrong with this?
• it includes self-interaction. i.e. the charge distribution related to the electron itself is
not excluded:

∑

i6=j

1

|ri − rj|
6=
∫

ρ(r)ρ(r′)

|r − r′|
dr dr′ ;

• it neglects the Pauli principle in a sense that there is no preference in electron-electron
interaction with respect to spin. The second problem can be corrected for. For an electron
with spin, say, “up”, the charge density of spin “down” is reduced in its neighbourhood.
Since this “down” density is not due to the electron in question, it can be handled as a
smooth distribution of charge, with no problem of self-interaction to care about. As will
be discussed larer in relation with the Hartree-Fock formalism, this additional interaction
due to the Pauli principle is the exchange interaction; it lowers the total energy (since it
puts electrons more apart) and can be casted, at least approximatively, in a form explicitly
dependent on density. The incorporation of exchange in the Thomas-Fermi formalism has
been done by Dirac.4 In the following, we discuss only qualitatively what functional
dependence on density could be expected, based on dimensions arguments.

Similarly to the kinetic energy density which scales ∼ ρ5/3, one can assume a power
low for the exchange energy density. The exchange term arises from electron-electron
Coulomb interaction ∼ e2/r, so we assume the exchange energy density to scale as ∼ e2ρν .
The energy density in general must have the dimension [ML−1T−2] (M stands for the units
of mass, L – length, T – time). In our combination ∼ e2/r considered for the exchange
energy density, e2 has dimension [ML3T−2] since e2/r is energy. ρ is number per unit
volume, i.e. its dimensionality is L−3.

ML−1T−2 = ML3T−2L−3ν ⇒ ν = 4/3.

Dirac (1930) suggested a correction term

ETFD = ETF − CX

∫

[ρ(r)]4/3 dr (1.25)

to be added to the Thomas-Fermi total energy of Eq.(1.13). The Thomas-Fermi-Dirac
equation reads:

5

3
CK [ρ(r)]2/3 −

4

3
CX [ρ(r)]1/3 = µ − eVext(r) − u(r) , (1.26)

as a substitution to Eq. (1.16). We do not specify the magnitude of the exchange constant
CX here.

Considering the performance of the Thomas-fermi theory with Dirac’s exchange term,
one can note that the total energy (already erroneously too low) is lowered even fur-
ther. There are still no bound negative ions. However, neutral atoms get a finite spatial
extension [ρ(r) = 0 from certain radius on].

4P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376 (1930).
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1.3.2 Gradient expansions

A more serious problem of the Thomas-Fermi approach is an unsufficiently accurate treat-
ment of kinetic energy. Von Weizsäcker5 considered modified plane waves (1 + ar) exp(ikr)
in order to have an inhomogeneous situation and found a gradient correction term

KW[ρ(r)] =
1

2

∫ [

∇ρ1/2(r)
]2

dr .

Later on Kirshnitz used systematic expansion and has shown that the 1st order term is
1/9 of KW. From different points of view, one can achieve coefficients λ, 1/9 ≤ λ ≤ 1, in
front of KW[ρ(r)].

Results: the electronic density at atomic nuclei becomes finite, and at infinity decays
exponentially. Negative ions are formed and molecules may bind. However, it is a problem
in attempting to improve the Thomas-fermi theory systematically, based on gradient
expansions. It was shown that the 6th order in the gradient exopansion already diverges.

5C. von Weizsäcker, Z. Phys. 96, 431 (1935).
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