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Bloch’s Theorem
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Bloch wave function ‘
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A Bloch wave function
(bottom) can be broken up
into the product of a periodic
function (top) and a plane-
wave (center). The left side
and right side represent the
same Bloch state broken up in
two different ways, involving
the wave vector k, (left) or k,
(right). The difference (k,-k,)
is a reciprocal lattice vector.
In all plots, blue is real part
and red is imaginary part.
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How strong Is the interaction?
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Nearly Free Electrons

(E2— &)Y (4) ZUE—T/)(Q K) =

A formal means to treat the potential U as small 1s to define

U= = /A wsz= A is the small parameter in terms of which
K perturbation theory will expand.

D(G) =00 @+ @) A+...; E=EVFAED 4.
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Nearly Free Electrons

Zeroth Order: b () [8 8“’)] 0.
Extended zone scheme: Reduced zone scheme:
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Nearly Free Electrons

First Order: (g% — e2u” ( +Z“’K¢(0) —K)— &My (3) =0.

Taking wg’) from previous solution and evaluation at g = k gives £ = wy.
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Degenerate Perturbation Theory

One way to obtain a resolution of this problem is to recast Schrodinger's
equation In variational form, as discussed In Appendix B. Solving the
Schrodinger's equation is equivalent to finding extrema of the functional

(W[ (H~E)).

ZW:I(U:C —&)|;)C; =

:iciwi>- J
= FCET = (4] (H - &) ;)
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Bloch's Theorem in Three Dimensions

(&5 — Z (G — K)
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Degenerate Perturbation Theory

In the present case, the plan is to restrict all attention to wave
functions that are linear combinations of the two vectors |;) = |k)
and |v») = |k+ K), but otherwise solve the Hamiltonian exactly.

Sg—l-U()—(c: U—K’
. 0 _

0 0 0
82 + 8E+I_f' [E-k* 82-&-1_{’ , | Because U(7) is real,
& =UpA + HUgIS | vg =g
2 4 £ *




Degenerate Perturbation Theory

At the point where £%+ o = €2 is exactly satisfied, one obtains

E = 8%+U0——‘Uff(-

Thus the energy gap &, between bands is

&g = 2|Ugl.
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Degenerate Perturbation Theory (1D)
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Figure 8.2. Construction of Brillouin zones. (A) Perpendicular bisectors are drawn be-
tween the origin and all nearby reciprocal lattice points. These are the zone boundaries.
(B) The first, second, and third Brillouin zones are shaded in different colors. The first
zone is the set of points closer to the origin than any other reciprocal lattice point, the sec-
ond zone is the set of points that one reaches by passing a minimum of one zone boundary,
and the third zone is the set of points that one reaches by crossing a minimum of two zone
boundaries.




Brillouin Zones

d Figure 8.3. The first Brillouin zone can be viewed
7 b as a closed surface whose edges are connected to
o each other. Therefore a path that appears to be
AR F leaving from one edge is actually entering from
I d 7 another, as shown in this representation of straight
“b o line motion. This view of the first Brillouin zone is
motivated by the fact that physical quantities such
as & are periodic functions over the first Brillouin

zone.
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Brillouin zone
boundary intersection
for square lattice

In two dimensions
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Nearly Free Electron
Fermi Surfaces
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Brillouin zone Extended zone scheme Reduced zone scheme
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Figure 8.5. Fermi surface for three electrons per site in an fcc crystal. On the left the
free-electron Fermi surface is shown in the extended zone scheme, while on the right the
same surfaces are projected back into the first Brillouin zone in the reduced zone scheme.
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Brillouin 1 electron/cell 2 electrons/cell 3 electrons/cell
zone

First

Second

a Third

Figure 8.6. Nearly free electron Fermi surfaces for fcc crystals. With three electrons per
unit cell the Fermi surface extends slightly into the fourth Brillouin zone, but the pocket is
very small and is not shown.
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Nearly free electron Fermi
surfaces for bcc crystals
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Nearly free electron
Fermi surfaces for
hexagonal crystals
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Tightly Bound Electrons

Solids are made from atoms, and viewed as a collection of atoms.
Imagine a collection of isolated atoms and slowly bring them
together to form a crystal. Surely in that case, the most appropriate
approximation must begin with atomic wave functions.

 Linear Combinations of Atomic Orbitals (LCAO)
* Tight Binding Model
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Linear Combinations of Atomic Orbitals (LCAQO)

The idea works best for atoms where most of the electrons are closely held in
closed shells, and the wave functions of the remaining electrons have an amplitude
that decays rapidly away from the nucleus. The following discussion applies to
the electrons of the outer shells, neglecting the ones in the inner core. Let a® be
the wave function for an electron occupying an isolated atom; the index #’ lets one
choose more than one electron orbital. The wave function satisfies

EZ

j;cat aE —
an (r) 2m

VPG (F) + UM ()a (7) = bl (7),

where the Hamiltonian and energy £2, refer to an isolated atom. Such atomic wave
functions were computed by atomic physicists such as Hartree (1928) starting in
the 1920’s, but for the present discussion, their most significant feature is that like
the wave function of the hydrogen atom, they decrease exponentially as one moves
more than a few angstroms from the nucleus.
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Linear Combinations of Atomic Orbitals (LCAQ)

Now imagine bringing many such atoms together to form a crystal with lattice
vectors R, obtaining the Hamiltonian

. =\ at s —
H= -V +UF =V +§E:U (7—R).

2m

Using atomic waves functions to solve this Hamiltonian proceeds in two steps.

The first 1s to build some wave functions that automatically satisfy Bloch’s theo-
rem, Eq. (7.36). They are
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Linear Combinations of Atomic Orbitals (LCAQO)

A quick calculation verifies that
— 1 7 D/ — —
® +(F+R)=— e*®a (F—R +R
n k( ) \/I_V ; ( )

= — S HER G F-R) =D (F)FR
R’

The wave functions @ are neither normalized, nor eigenfunctions of the
Hamiltonian. Just because solutions of Schrodinger's equation must have the form
of Bloch wave function does not mean that all functions of this form solve
Schrodinger's equation. They can however be used as trial wave functions and
summed together so as to get the best solution of Schrodinger's equation possible.




Linear Combinations of Atomic Orbitals (LCAQ)
b (7) = Z Cone ®,7(7)

To choose the constants C,,,/, use the variational principle. Forming
(¢ nz|3{ — &1 z) and varying with respect to C,, gives

This is an eigenvalue equation for € and C,,.

0= E : Cnn’ <(I) ,ﬁljlf —& |q) F) Adding a subscript on £ acknowledges that
n''k n'k the eigenvector 5‘,, and eigenvalue &, are linked.
The equation can be put in more familiar form

—~ 0= Z Cont (Hrnr — EnSprrr) by multiplying from the left by /.

How = (@ 2|H|® ) and the overlap matrix 8,y = (® |® ;).
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Linear Combinations of Atomic Orbitals (LCAQO)

As a first example of how this formalism develops in practice, specialize to the
case of a Bravais lattice where the the vectors from any lattice point to the nearest
neighbors are denoted by 5, and also specialize to the case of a single s orbital,
meaning that there is just a single atomic wave function a*(7) which is spherically
symmetric. Further computation makes use of the localized nature of the atomic
wave functions. So, when an integral of the form

] d7 & (7 + R)a® (7 + R)

appears, set it to zero unless R and R’ are equal, or are nearest neighbors separated
by one of the vectors 0.
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Linear Combinations of Atomic Orbitals (LCAQ)

There are only three overlap integrals that appear in the computation, namely

o= / d7 a®(F)a™ (7 + 0)

I

U = / d7 a®(F)[U(F) — U™ (F))a™ (F). Recall that U(7) = 3, U3 — )
(= f 47 & (F)[U(F) — U (F+ 8)]a™ (7 + 3).

These integrals are independent of the direction of § because the atomic wave func-
tion is spherically symmetric. Note that U* (7 + §) is not necessarily very small

near the origin where ¢ (7) is large.
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Linear Combinations of Atomic Orbitals (LCAQ)

Cnn’ (g{n”n’ — Engn”n’) =0
2.

Since there Is only one orbital, the indices n and n* range over only one
value one can call s, and the single constant C.. simply drops out. Thus one
can write in the case of a single s orbital that

E = Hs/Sss.
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Linear Combinations of Atomic Orbitals (LCAQ)

To evaluate &, write

S = Z elk (R-R') 1 / d7 at(r_R’) The atomic wave

funcuons are real.
RR!

=1+ Z 6"“,{'(S / dr a® (?)aat(?+ (5) Whenever R = R’ the
” integral gives 1, and
there are N such

terms.

=1+ Z L
5

<} Jashore University of Science and Technology S pr Rachid, 2021



Linear Combinations of Atomic Orbitals (LCAQ)

. . K2 _ ei?c'-(R'—R”)
(@[50 =Y [ dia*(—R)-5-V?+ U@ (F-R)
=

2m

n° TN W (-
=Y [ dratp-R) {75,V VIR E-R) € o
7 +[UF) - U F~R))a* (7 R)) N

at(2 _ p\Latiz __ pf
B a*(r—R)a“(r—R") 7..5_w#
= | dr E gat ( ) ( )e'k (R—R’)  Because a solves the atomic
N Hamiltonian with eigenvalue 2.

RR!
ik-(R—R')

d7 at(=+ _ p = prati=  pN\l.atiz o6
+/ P Y @ - RV - U - R)lat (- R)
RR’
=&%(14+a Y ) +U+t ) .
; ;
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Linear Combinations of Atomic Orbitals (LCAQ)

E = Hy/Sss.

U+t ZS eiz'g
(1 + ZS e;‘Z.S) ‘

Ezﬁgat |

Discarding terms of order ol and at on the grounds that a, t, and U are already
small, one obtains

E.m EX LU+t S RS |
‘ ? Energy of tightly
bound electrons
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Tight Binding for Lattice with Basis

Tight Binding for Lattice with Basis.  Using the tight binding method for a
single atomic orbital is a bit of a cheat because the method is originally billed as
variational, and then it 1s applied to a single function, leaving nothing to vary. For
more complex cases it is necessary to generalize the formalism to accommodate a
lattice with a basis ¥; . . . ¥;. This can be accomplished by writing

Now the index n’ ranges both over atomic orbitals, and also over basis vectors. The
number of values of n’ equals the sum over basis vectors of the number of orbitals

at each site.
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Wannier Functions

Calculations employing atomic orbitals can be put on a much more general footing by
constructing Wannier functions. These are a set of orthonormal wave functions that one can
always construct from Bloch functions and which are plausibly localized on atomic sites.

Suppose that one has found all the eigenfunctions of the Hamiltonian and has arranged
them as allowed by Bloch's theorem. Then the Wannier function for electrons from band n
centered at lattice site R Is defined to be
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The Wannier functions form an orthonormal set, as may be seen by computing
L= S L ' _ZRuiRF % By
/dr wy(R, F)w (R, F) = / dr Z Z N the-Rt 1/}&(:‘)1[)@;,(1’)
kK

_ l e-—f;'("l_'\"—i—ﬁ'-}("d L
e N E m,nYg s
Y
The sum i1s normalized because as shown in

Section 7.2.4, the number of & in the first Bril-
louin zone equals N.

— 5§!ﬁ; '5”,??1'

If one should happen to know the Wannier functions, the Bloch functions can
be recovered from them by computing

1 — 7D
-\ _ik-R —
o an(R: r)ei :wn};(r)
VN =
R




Tight Binding Model

If the Wannier function centered at R does decay exponentially once it leaves
site R, then it is very useful to write Schrodinger’s equation in terms of a Wannier
function basis. This calculation 1s much more concise than the one with atomic
orbitals. Denote the state vector corresponding to w, (R, 7) by |R), and write

H="3"|R)(R|H|R)R| (8.64)
RR'
The Hamiltonian in (8.64) 1s not the full Hamiltonian, but has been restricted to the

nth band. It 1s not difficult to add an extra index and consider many bands, but that
is not needed for the following discussion, so the index n will be dropped.
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Tight Binding Model

s = (R'|H|R)

Therefore, H 3z, depends only upon the difference between R and R’. Furthermore,
when R and R’ are nearest neighbors, symmetry often dictates that H g €qual a

single constant t, while when R = fé’, one can denote H ;5 by a constant U. In this
case the Hamiltonian (8.64) becomes

. . o . . S is again a set of vectors pointing from R
Hrg = Z |R> t <R + 5| 4 Z |R>U<R| . to its nearest neighbors. This notation helps
35 3 suggest the idea of hopping from site R+ to

R.

Tight-binding Hamiltonian
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Tight Binding Hamiltonian

Hrg = |R) t (R+6|+)>_ |RU(R|.
RS R

The first term on the right hand side Is the hopping term that
allows electrons to move from one site to another. The second

term Is an on-site term that describes the energy of placing an
electron at a lattice site.

<} lashore University of Science and Technology " brRachid, 2021



Tight Binding Model

The tight-binding Hamiltonian has a simple exact solution. Define
— l T D, —
ky=—=>_€"“¥R),
b= g5 2R
for k in the first Brillouin zone, so that one has the inversion formula

— 1 T
IR) = — Z e’ 'R|k>, Sum only over  in the first Brillouin zone.
VN =
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Tight Binding Model

L 1 —_ PBAAY /7 l — I B ;B o=
Hig=) — Z ) te— ik R+ik (R+5)<kr|+z > Z ByUe—kR+ik R )
Rg E" R kk!
=D &k (k]
k
with




Tight Binding Model

__ pat ik-6
&~ & —I—U—i—tZe .




