Condensed Matter Physics PHY 5111

Dr Mohammad Abdur Rashid

The kohn-Sham method: Elaboration

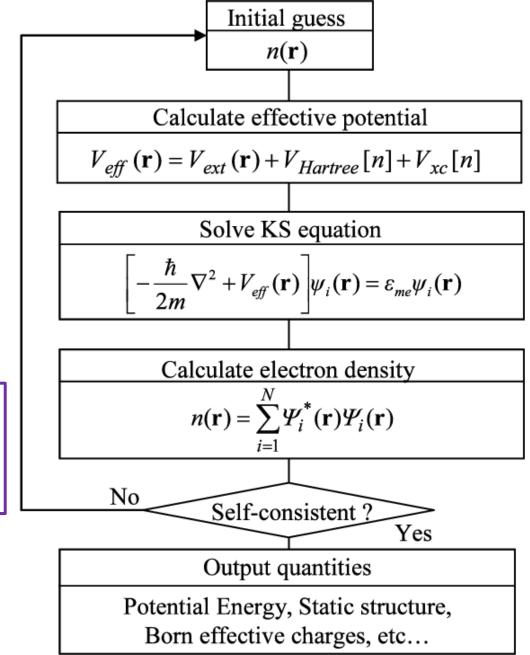
Density-Functional Theory of Atoms and Molecules

Robert G. Parr and Weitao Yang

Chapter 8

Kohn-Sham method

$$v_{\text{eff}}(\mathbf{r}) = v(\mathbf{r}) + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + v_{xc}(\mathbf{r})$$



Article to read

Perspective: Fifty years of density-functional theory in chemical physics

Cite as: J. Chem. Phys. **140**, 18A301 (2014); https://doi.org/10.1063/1.4869598

Submitted: 21 January 2014 . Accepted: 13 March 2014 . Published Online: 01 April 2014

Axel D. Becke

Local density approximation

$$E_{xc}^{\text{LDA}}[\rho] = \int \rho(\mathbf{r}) \varepsilon_{xc}(\rho) d\mathbf{r}$$

$$v_{xc}^{\text{LDA}}(\mathbf{r}) = \frac{\delta E_{xc}^{\text{LDA}}}{\delta \rho(\mathbf{r})} = \varepsilon_{xc}(\rho(\mathbf{r})) + \rho(\mathbf{r}) \frac{\delta \varepsilon_{xc}(\rho)}{\delta \rho}$$

$$\left[-\frac{1}{2}\nabla^2 + v(\mathbf{r}) + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + v_{xc}^{LDA}(\mathbf{r})\right] \psi_i = \varepsilon_i \psi_i.$$

Local density approximation

$$\varepsilon_{xc}(\rho) = \varepsilon_x(\rho) + \varepsilon_c(\rho)$$

$$\varepsilon_{xc}(\rho) = \varepsilon_x(\rho) + \varepsilon_c(\rho)$$
 $\varepsilon_x(\rho) = -C_x \rho(\mathbf{r})^{1/3}, \quad C_x = \frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3}$

$$\varepsilon_c(r_s) = \frac{A}{2} \left\{ \ln \frac{x}{X(x)} + \frac{2b}{Q} \tan^{-1} \frac{Q}{2x+b} - \frac{bx_0}{X(x_0)} \left[\ln \frac{(x-x_0)^2}{X(x)} + \frac{2(b+2x_0)}{Q} \tan^{-1} \frac{Q}{2x+b} \right] \right\}$$
 (E.27)

where $x = r_s^{1/2}$, $X(x) = x^2 + bx + c$, and $Q = (4c - b^2)^{1/2}$. For $\varepsilon_c^0(r_s)$, A = 0.0621814, $x_0 = -0.409286$, b = 13.0720, and c = 42.7198; for $\varepsilon_c^1(r_s)$, $A = \frac{1}{2}(0.0621814)$, $x_0 = -0.743294$, b = 20.1231, and c = 101.578. These formulas are generally accepted as the most accurate available for the uniform-gas correlation energy per particle.

In the presence of a magnetic field $\mathbf{B}(\mathbf{r})$ that acts only on the spins of the electrons, the Hamiltonian of the system becomes

$$\hat{H} = -\frac{1}{2} \sum_{i}^{N} \nabla_{i}^{2} + \sum_{i < j}^{N} \frac{1}{r_{ij}} + \sum_{i}^{N} \upsilon(\mathbf{r}_{i}) + 2\beta_{e} \sum_{i}^{N} \mathbf{B}(\mathbf{r}) \cdot \mathbf{s}_{i}$$
(8.1.1)

where $\beta_e = e\hbar/2mc$ is the Bohr magneton and s_i is the electron spin angular momentum vector for the *i*th electron (Levine 1983, p. 285).

$$\hat{V} = \sum_{i}^{N} v(\mathbf{r}_{i}) + 2\beta_{e} \sum_{i}^{N} \mathbf{B}(\mathbf{r}_{i}) \cdot \mathbf{s}_{i}$$

$$= \int v(\mathbf{r})\hat{\rho}(\mathbf{r}) d\mathbf{r} - \int \mathbf{B}(\mathbf{r}) \cdot \hat{\mathbf{m}}(\mathbf{r}) d\mathbf{r}$$

$$\langle \Psi | \hat{V} | \Psi \rangle = \int v(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r} - \int \mathbf{B}(\mathbf{r}) \cdot \mathbf{m}(\mathbf{r}) d\mathbf{r}$$

$$\langle \Psi | \hat{V} | \Psi \rangle = \int v(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r} - \int b(\mathbf{r}) m(\mathbf{r}) d\mathbf{r}$$

We shall discuss only the simple case of z-direction $b(\mathbf{r})$

$$\hat{\mathbf{m}}(\mathbf{r}) = -2\beta_e \sum_{i}^{N} \mathbf{s}_i \, \delta(\mathbf{r} - \mathbf{r}_i)$$

$$\hat{\rho}(\mathbf{r}) = \sum_{i}^{N} \delta(\mathbf{r} - \mathbf{r}_{i})$$

$$\rho(\mathbf{r}) = \langle \Psi | \, \hat{\rho}(\mathbf{r}) \, | \Psi \rangle$$

$$\mathbf{m}(\mathbf{r}) = \langle \Psi | \, \hat{\mathbf{m}}(\mathbf{r}) \, | \Psi \rangle$$

$$m(\mathbf{r}) = -2\beta_e \langle \Psi | \sum_{i}^{N} s_z(i) \, \delta(\mathbf{r} - \mathbf{r}_i) | \Psi \rangle$$

$$= -2\beta_e \int s_z \, \delta(\mathbf{r} - \mathbf{r}') \gamma_1(\mathbf{x}', \mathbf{x}') \, d\mathbf{x}'$$

$$= -2\beta_e \sum_{s=\alpha,\beta} s_z \gamma_1(\mathbf{r}s, \mathbf{r}s)$$

$$= -2\beta_e \left[\frac{1}{2} \gamma_1(\mathbf{r}\alpha, \mathbf{r}\alpha) + (-\frac{1}{2}) \gamma_1(\mathbf{r}\beta, \mathbf{r}\beta) \right]$$

$$= \beta_e \left[\rho^{\beta}(\mathbf{r}) - \rho^{\alpha}(\mathbf{r}) \right]$$

$$E_{0} = \underset{\Psi}{\text{Min}} \left\langle \Psi \middle| \hat{T} + \hat{V}_{ee} + \sum_{i}^{N} v(\mathbf{r}_{i}) + 2\beta_{e} \sum_{i}^{N} b(\mathbf{r}_{i}) \cdot \mathbf{s}_{z}(i) \middle| \Psi \right\rangle$$

$$= \underset{\rho}{\text{Min}} \left\{ \underset{\Psi \to \rho^{\alpha}, \rho^{\beta}}{\text{Min}} \left\langle \Psi \middle| \hat{T} + \hat{V}_{ee} \middle| \Psi \right\rangle + \int \left[v(\mathbf{r})\rho(\mathbf{r}) - b(\mathbf{r})m(\mathbf{r}) \right] d\mathbf{r} \right\}$$

$$= \underset{\rho}{\text{Min}} \left\{ F[\rho^{\alpha}, \rho^{\beta}] + \int d\mathbf{r} \left[(v(\mathbf{r}) + \beta_{e}b(\mathbf{r}))\rho^{\alpha}(\mathbf{r}) + (v(\mathbf{r}) - \beta_{e}b(\mathbf{r}))\rho^{\beta}(\mathbf{r}) \right] \right\}$$

where

$$F[\rho^{\alpha}, \rho^{\beta}] = \min_{\Psi \to \rho^{\alpha}, \rho^{\beta}} \langle \Psi | \hat{T} + \hat{V}_{ee} | \Psi \rangle$$

The Kohn–Sham method can now be introduced to rigorously handle the kinetic-energy contribution to $F[\rho^{\alpha}, \rho^{\beta}]$. In the manner of (7.1.13), define

$$F[\rho^{\alpha}, \rho^{\beta}] = T_s[\rho^{\alpha}, \rho^{\beta}] + J[\rho^{\alpha} + \rho^{\beta}] + E_{xc}[\rho^{\alpha}, \rho^{\beta}]$$
 (8.1.12)

where $T_s[\rho^{\alpha}, \rho^{\beta}]$ is the Kohn-Sham kinetic-energy functional corresponding to a system of noninteracting electrons with densities ρ^{α} and ρ^{β} , and $E_{xc}[\rho^{\alpha}, \rho^{\beta}]$ is the exchange-correlation-energy functional.

$$T_s[\rho^{\alpha}, \rho^{\beta}] = \operatorname{Min}\left[\sum_{i\sigma} n_{i\sigma} \int d\mathbf{r} \phi_{i\sigma}^*(\mathbf{r})(-\frac{1}{2}\nabla^2)\phi_{i\sigma}(\mathbf{r})\right]$$

$$\sum_{i} n_{i\alpha} |\phi_{i\alpha}(\mathbf{r})|^{2} = \rho^{\alpha}(\mathbf{r}), \qquad \sum_{i} n_{i\beta} |\phi_{i\beta}(\mathbf{r})|^{2} = \rho^{\beta}(\mathbf{r})$$

$$T_s[\rho^{\alpha}, \rho^{\beta}] = \sum_{i\sigma} n_{i\sigma} \int d\mathbf{r} \phi_{i\sigma}^*(\mathbf{r}) (-\frac{1}{2}\nabla^2) \phi_{i\sigma}(\mathbf{r})$$

$$E[\rho^{\alpha}, \rho^{\beta}] = \sum_{i\sigma} n_{i\sigma} \int d\mathbf{r} \phi_{i\sigma}^{*}(\mathbf{r}) (-\frac{1}{2}\nabla^{2}) \phi_{i\sigma}(\mathbf{r}) + J[\rho^{\alpha} + \rho^{\beta}] + E_{xc}[\rho^{\alpha}, \rho^{\beta}]$$
$$+ \int d\mathbf{r} [(v(\mathbf{r}) + \beta_{e}b(\mathbf{r}))\rho^{\alpha}(\mathbf{r}) + (v(\mathbf{r}) - \beta_{e}b(\mathbf{r})\rho^{\beta}(\mathbf{r}))] \quad (8.1.16)$$

The variational search for the minimum of $E[\rho^{\alpha}, \rho^{\beta}]$ can then be carried out through orbitals, subject to normalization constraints:

$$\int \phi_{i\sigma}(\mathbf{r})\phi_{i\sigma}(\mathbf{r}) d\mathbf{r} = 1$$
 (8.1.17)

The resulting Kohn–Sham equations are

$$\hat{h}_{\text{eff}}^{\alpha} \phi_{i\alpha}(\mathbf{r}) = \left[-\frac{1}{2} \nabla^{2} + v_{\text{eff}}^{\alpha}(\mathbf{r}) \right] \phi_{i\alpha}(\mathbf{r})$$

$$= \frac{\varepsilon_{i\alpha}'}{n_{i\alpha}} \phi_{i\alpha}(\mathbf{r}) = \varepsilon_{i\alpha} \phi_{i\alpha}(\mathbf{r}), \qquad i = 1, 2, \dots, N^{\alpha}$$

$$\hat{h}_{\text{eff}}^{\beta} \phi_{j\beta}(\mathbf{r}) = \left[-\frac{1}{2} \nabla^{2} + v_{\text{eff}}^{\beta}(\mathbf{r}) \right] \phi_{j\beta}(\mathbf{r})$$

$$= \frac{\varepsilon_{j\beta}'}{n_{j\beta}} \phi_{j\beta}(\mathbf{r}) = \varepsilon_{j\beta} \phi_{j\beta}(\mathbf{r}), \qquad j = 1, 2, \dots, N^{\beta}$$

$$N^{\alpha} = \int d\mathbf{r} \, \rho^{\alpha}(\mathbf{r}), \qquad N^{\beta} = \int d\mathbf{r} \, \rho^{\beta}(\mathbf{r}) \qquad N = N^{\alpha} + N^{\beta}$$

$$N = N^{\alpha} + N^{\beta}$$

where the spin-dependent effective potentials are

$$v_{\text{eff}}^{\alpha} = v(\mathbf{r}) + \beta_e b(\mathbf{r}) + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \frac{\delta E_{xc}[\rho^{\alpha}, \rho^{\beta}]}{\delta \rho^{\alpha}(\mathbf{r})}$$
$$v_{\text{eff}}^{\beta} = v(\mathbf{r}) - \beta_e b(\mathbf{r}) + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \frac{\delta E_{xc}[\rho^{\alpha}, \rho^{\beta}]}{\delta \rho^{\beta}(\mathbf{r})}$$

$$N^{\alpha} = \int d\mathbf{r} \, \rho^{\alpha}(\mathbf{r}), \qquad N^{\beta} = \int d\mathbf{r} \, \rho^{\beta}(\mathbf{r}) \qquad N = N^{\alpha} + N^{\beta}$$

$$N = N^{\alpha} + N^{\beta}$$

$$T_s[\rho^{\alpha}, \rho^{\beta}] = \sum_{i\sigma} n_{i\sigma} \int d\mathbf{r} \phi_{i\sigma}^*(\mathbf{r}) (-\frac{1}{2}\nabla^2) \phi_{i\sigma}(\mathbf{r})$$

$$T_s[\rho^{\alpha}, \rho^{\beta}] = T_s[\rho^{\alpha}, 0] + T_s[0, \rho^{\beta}]$$

$$T_s[\rho^{\alpha}, 0] = \sum_{i\alpha} n_{i\alpha} \int d\mathbf{r} \, \phi_{i\alpha}^*(\mathbf{r}) (-\frac{1}{2}\nabla^2) \phi_{i\alpha}(\mathbf{r})$$

$$\rho^{\alpha}(\mathbf{r}) = \rho^{\beta}(\mathbf{r}) = \frac{1}{2}\rho(\mathbf{r})$$

$$T_s\left[\frac{1}{2}\rho, \frac{1}{2}\rho\right] = T_s\left[\frac{1}{2}\rho, 0\right] + T_s\left[0, \frac{1}{2}\rho\right]$$
$$= 2T_s\left[\frac{1}{2}\rho, 0\right]$$

$$T_s[\rho^{\alpha}, \rho^{\beta}] = T_s[\rho^{\alpha}, 0] + T_s[0, \rho^{\beta}]$$

$$T_s[\rho^{\alpha}, \rho^{\beta}] = \frac{1}{2}T_s^0[2\rho^{\alpha}] + \frac{1}{2}T_s^0[2\rho^{\beta}]$$

$$\rho^{\alpha}(\mathbf{r}) = \rho^{\beta}(\mathbf{r}) = \frac{1}{2}\rho(\mathbf{r})$$

$$T_s[\frac{1}{2}\rho, 0] = T_s[0, \frac{1}{2}\rho]$$

$$T_s^0[\rho] = T_s[\frac{1}{2}\rho, \frac{1}{2}\rho]$$

With the spin-polarized Kohn-Sham equations of §8.1, the kinetic energy is handled exactly and only the exchange-correlation energy remains to be determined. The exchange-correlation contribution can be separated into exchange and correlation pieces:

$$E_{xc}[\rho^{\alpha}, \rho^{\beta}] = E_{x}[\rho^{\alpha}, \rho^{\beta}] + E_{c}[\rho^{\alpha}, \rho^{\beta}]$$
 (8.2.11)

where the exchange part is defined from (2.5.24) as

$$E_x[\rho^{\alpha}, \rho^{\beta}] = -\frac{1}{2} \int \int \frac{1}{r_{12}} [|\rho_1^{\alpha\alpha}(\mathbf{r}_1, \mathbf{r}_2)|^2 + |\rho_1^{\beta\beta}(\mathbf{r}_1, \mathbf{r}_2)|^2] d\mathbf{r}_1 d\mathbf{r}_2$$

$$E_x[\rho^{\alpha}, \rho^{\beta}] = -\frac{1}{2} \int \int \frac{1}{r_{12}} [|\rho_1^{\alpha\alpha}(\mathbf{r}_1, \mathbf{r}_2)|^2 + |\rho_1^{\beta\beta}(\mathbf{r}_1, \mathbf{r}_2)|^2] d\mathbf{r}_1 d\mathbf{r}_2$$

$$\rho_1^{\alpha\alpha}(\mathbf{r}_1,\mathbf{r}_2) = \sum_i n_{i\alpha}\phi_{i\alpha}(\mathbf{r}_1)\phi_{i\alpha}^*(\mathbf{r}_2)$$

$$\rho_1^{\beta\beta}(\mathbf{r}_1,\mathbf{r}_2) = \sum_i n_{i\beta} \phi_{i\beta}(\mathbf{r}_1) \phi_{i\beta}^*(\mathbf{r}_2)$$

$$E_{x}[\rho^{\alpha}, \rho^{\beta}] = \frac{1}{2}E_{x}[\rho^{\alpha}, \rho^{\alpha}] + \frac{1}{2}E_{x}[\rho^{\beta}, \rho^{\beta}]$$
$$= \frac{1}{2}E_{x}^{0}[2\rho^{\alpha}] + \frac{1}{2}E_{x}^{0}[2\rho^{\beta}]$$
$$E_{x}^{0}[\rho] = E_{x}[\frac{1}{2}\rho, \frac{1}{2}\rho]$$

$$E_x^{\text{LSD}}[\rho^{\alpha}, \rho^{\beta}] = 2^{1/3}C_x \int [(\rho^{\alpha})^{4/3} + (\rho^{\beta})^{4/3}] d\mathbf{r}$$

Local spin-density approximation (LSD)

Define the spin polarization parameter ζ by

$$\zeta = \frac{\rho^{\alpha} - \rho^{\beta}}{\rho} = \frac{\rho^{\alpha} - \rho^{\beta}}{\rho^{\alpha} + \rho^{\beta}}$$

Then $\rho^{\alpha} = \frac{1}{2}(1+\zeta)\rho$, $\rho^{\beta} = \frac{1}{2}(1-\zeta)\rho$, and the LSD exchange energy becomes

$$E_x^{\text{LSD}}[\rho^{\alpha}, \rho^{\beta}] = \frac{1}{2}C_x \int \rho^{4/3}[(1+\zeta)^{4/3} + (1-\zeta)^{4/3}] d\mathbf{r}$$

$$= \int \rho \varepsilon_x(\rho, \zeta) d\mathbf{r}$$
 (8.2.18)

where

$$\varepsilon_{x}(\rho, \zeta) = \varepsilon_{x}^{0}(\rho) + [\varepsilon_{x}^{1}(\rho) - \varepsilon_{x}^{0}(\rho)]f(\zeta)$$
 (8.2.19)

with the exchange density for the spin-compensated ("paramagnetic") homogeneous electron gas given by

$$\varepsilon_x^0(\rho) = \varepsilon_x(\rho, 0) = C_x \rho^{1/3} \tag{8.2.20}$$

for spin-completely-polarized ("ferromagnetic") homogeneous electron gas

$$\varepsilon_x^1(\rho) = \varepsilon_x(\rho, 1) = 2^{1/3} C_x \rho^{1/3}$$
 (8.2.21)

and

$$f(\zeta) = \frac{1}{2}(2^{1/3} - 1)^{-1}[(1 + \zeta)^{4/3} + (1 - \zeta)^{4/3} - 2]$$
 (8.2.22)

The LSD exchange energy density was originally cast in the form (8.2.19) by von Barth and Hedin (1972); the quantity $f(\zeta)$ serves as a weight factor between the two extreme cases $\zeta = 0$ and $\zeta = 1$.

Table 8.1 Ionization Potentials in electron volts of Some Light Atoms Calculated in the LSD, LDA, and HF Approximations

Atom	LSD	LDA	HF	Exptl.
H	13.4	12.0		13.6
He	24.5	26.4		24.6
Li	5.7	5.4	5.3	5.4
Be	9.1		8.0	9.3
В	8.8		7.9	8.3
C	12.1		10.8	11.3
N	15.3		14.0	14.5
0	14.2	16.5	11.9	13.6
F	18.4		16.2	17.4
Ne	22.6	22.5	19.8	21.6
Na	5.6	5.3	4.9	5.1
Ar	16.2	16.1	14.8	15.8
K	4.7	4.5	4.0	4.3

Note: LSD = local spin-density method; LDA = local-density approximation; HF = Hartree-Fock.

Table 8.2 LSD Spectroscopic Constants for Diatomic Molecules^a

	r _e (bohrs)		D_e (eV)		$\omega_e (\mathrm{cm}^{-1})$	
	Expt.	LSD	Expt.	LSD	Expt.	LSD
$\overline{\mathrm{H_2}}$	1.40	1.45	4.8	4.9	4400	4190
Li ₂	5.05	5.12	1.1	1.0	350	330
\mathbf{B}_{2}	3.00	3.03	3.0	3.9	1050	1030
C_2	2.35	2.35	6.3	7.3	1860	1880
N_2	2.07	2.07	9.9	11.6	2360	2380
O_2	2.28	2.27	5.2	7.6	1580	1620
\mathbf{F}_{2}^{2}	2.68	2.61	1.7	3.4	890	1060
\tilde{Na}_2	5.82	5.67	0.8	0.9	160	160
Al_2	4.66	4.64	1.8	2.0	350	350
Si ₂	4.24	4.29	3.1	4.0	510	490
P_2	3.58	3.57	5.1	6.2	780	780
S_2	3.57	3.57	4.4	5.9	730	720
Cl ₂	3.76	3.74	2.5	3.6	560	570

More to read

- Self-interaction correction
- The exchange-correlation-energy functional via the exchange-correlation hole
- The exchange-correlation-energy functional via wave-vector analysis

MOLECULAR PHYSICS, 2017 VOL. 115, NO. 19, 2315–2372 https://doi.org/10.1080/00268976.2017.1333644

TOPICAL REVIEW

3 OPEN ACCESS

Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals

Narbe Mardirossian^a and Martin Head-Gordon^{a,b}

^aKenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA; ^bChemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Generalized gradient approximation (GGA)

$$E_x^{GGA}[\rho] = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} \int d\mathbf{r} \, \rho^{4/3} F(s)$$

$$s = \frac{|\nabla \rho(r)|}{(2k_F \rho)}$$

$$k_F = (3\pi^2 \rho)^{1/3}$$

$$F(s) = (1 + 1.296s^2 + 14s^4 + 0.2s^6)^{1/15}$$

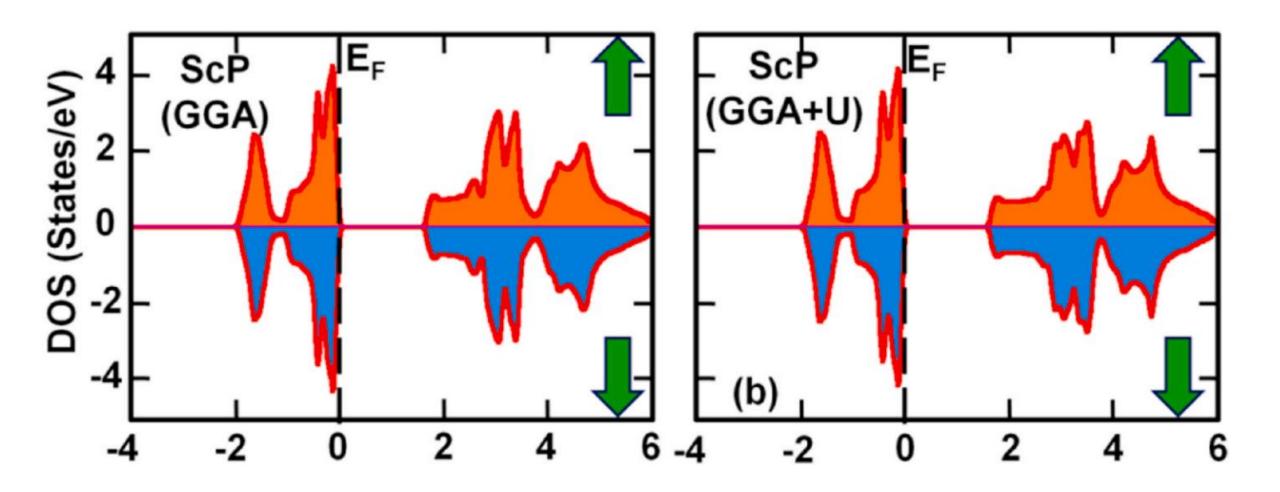
Table 8.5 Exchange Energies E_x of Neutral Atoms Calculated from Nonrelativistic Hartree–Fock Densities^{a,b}

Atom	LSD	IM	GGA	Exact
H	-0.268	-0.308	-0.311	-0.3125
He	-0.884	-1.015	-1.033	-1.026
Li	-1.538	-1.747	-1.789	-1.781
Be	-2.31	-2.60	-2.68	-2.67
Ne	-11.03	-11.82	-12.22	-12.11
Ar	-27.86	-29.39	-30.29	-30.18
Zn	-65.63	-68.25	-69.93	-69.7
Kr	-88.6	-91.8	-93.8	-93.9
Xe	-170.6	-175.6	-178.6	-179.1

^a From Perdew and Yue (1986).

^b LSD is the local spin density formula of (8.2.16), IM is the Langreth-Mehl formula of (8.6.21), GGA is the Perdew-Yue formula (8.7.1).

I.U.N. Lone et al., Vacuum 191 (2021) 110328



A. Anjami et al.: Results Phys. 7 (2017) 3522–3529

