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List of Experiments: 

 

 

 

 

 

 

Reference Books: 

 

1. Practical Physics, Dr. Giasuddin Ahmed and Md. Shahabuddin 

2. Physics-I & II, R. Resnick, D. Halliday 

  

1. To determine the modulus of rigidity of the material of a wire by the method of oscillation 

(Dynamic method). 

2. To determine the value of acceleration due to gravity (g) by means of a compound 

pendulum. 

3. To determine the moment of inertia of a flywheel about its axis of rotation. 

4. To determine the specific heat of a liquid by the method of cooling. 

5. To determine the value of the mechanical equivalent of heat (J) by electrical method with 

radiation correction.  

6. To determine the end-corrections of a meter bridge. 

7. To determine the value of a low resistance by the method of fall of potential.  

8. To determine the resistance of a galvanometer by half deflection method. 

9. To determine the radius of curvature of a convex lens by Newton’s rings. 
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C 

Experiment no 1:       Date: 

 

Name of the Experiment: Determination of the modulus of rigidity of the material of a 

wire by the method of oscillations (Dynamic Method). 

Theory: 

A cylindrical body is supported by a vertical wire of length l and radius r as shown in 

Fig. 1.1. The axis of the wire passes through its center of gravity. If the body is twisted through 

an angle and released, it will execute torsional oscillations about a vertical axis. Therefore, the 

motion is simple harmonic. If at any instant the angle of twist is θ, the moment of the torsional 

couple exerted by the wire will be 

Cθθ
2l

rπ
4

=


, 

where
2l

rπ
C

4
=  is a constant and η is the modulus of rigidity 

of the material of the wire. 

Therefore, the time period for torsional oscillations is,

C

I
2πT =

,

 

where I is the moment of inertia of the cylindrical body which 

is given by 2

2

1
MaI = . Here M and a are the mass and radius 

of the cylinder respectively. 

From above two equations, we get 

4

2

2

r

lπI8

C

I4π
T


==  

or, 
42

rT

lπI8
= dynes/cm2 

Apparatus: 

A uniform wire, A cylindrical bar, Suitable clamp, Stopwatch, Screw gauge, Slide 

calipers, Meter scale, etc. 

 

Brief Procedure:  

1. Find out the value of one smallest division of the main scale and the total number of 

divisions of the vernier scale of the slide calipers and calculate vernier constant (V.C). 

2. Find out the value of one smallest division of the linear scale, value of pitch (the 

distance along the linear scale traveled by circular scale when it completes one rotation) 

and the total number of divisions of the circular scale of the screw gauge and calculate 

least count (L.C). 

3. Measure the radius, a of the cylinder by using the slide calipers. 

4. Measure the mass, M of the cylinder. Calculate moment of inertia. 

5. Measure the radius, r of the wire by using the screw gauge. 

Fig. 1.1: Torsional pendulum 

A 

B 

l 
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6. Measure the length, l of the wire between the point of suspension and the point at which 

the wire is attached to the cylinder with a meter scale. 

7. Twist the cylinder from its equilibrium position through a small angle and release so 

that it begins to oscillate. Measure the time for 30 complete oscillations with a stop 

watch. Find out the time period of oscillation. 

8. Calculate the value of the modulus of rigidity (η) of the material of the given wire. 

 

 

Experimental Data: 

Vernier Constant (V.C.) of the slide calipers,  

 

V. C. = 
𝑇ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑠𝑐𝑎𝑙𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑠𝑐𝑎𝑙𝑒
 

 

 

 

 

 

 

Table-1: Table for the radius of the cylinder 

No. 

of 

obs. 

Main scale 

reading, x 

(cm) 

Vernier 

scale 

division, 

d 

Vernier 

constant, 

VC 

(cm) 

Vernier scale 

reading, 

y = Vc × d 

(cm) 

Diameter, 

x + y  

(cm) 

Mean 

diameter, 

D 

(cm) 

Instru-

mental 

error 

(cm) 

Corrected 

diameter, 

D 

(cm) 

Radius, 

2

D
a =

 
(cm) 

1   

 

  

    

2     

3     

4     

5     
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Least Count (L.C.) of the Screw Gauge 

L. C. = 
𝑃𝑖𝑡𝑐ℎ

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑠𝑐𝑎𝑙𝑒
 

 

 

 

 

 

 

 

 

Table-2: Table for the radius of the wire 

No. 

of 

obs. 

Linear 

scale 

reading, x 

(cm) 

Circular 

scale 

division, 

d 

Least 

count, 

Lc 

 (cm) 

Circular scale 

reading, 

y = d × Lc 

(cm) 

Diameter, 

x + y  

(cm) 

Mean 

diameter, 

D 

(cm) 

Instru-

mental 

error 

(cm) 

Corrected 

diameter, 

D (cm) 

Radius, 

2

D
r =  

(cm) 

1   

 

  

    

2     

3     

4     

5     

 

 

 

 

 

Length of the wire, l =                cm   
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Table-3: Table for the time period 

No. of obs. Time for 30 oscillations, t  (sec) Time period, 
30

t
T =  (sec) Mean T (sec) 

1   

 

2   

3   

4   

5   

 

Calculations: 

Moment of Inertia of the cylinder, 2

2

1
MaI = g-cm2 

 

 

 

 

Modulus of rigidity of the wire, 
42

rT

πI8 l
= dynes/cm2 

 

 

 

 

 

 

 

Error Calculation: 

Standard value of the modulus of rigidity of the material of the wire (steel) = 
 

8.4 × 1011 dynes cm-2.  

    

Percentage error= 
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒 ~ 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒
× 100 % 

 

 

 

 

Result: 

 

 

Discussions:  
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Experiment no 2:       Date: 

 

Name of the Experiment: Determination of the value of the acceleration due to gravity (g) 

by means of a compound pendulum. 

Theory: 

A compound pendulum is a rigid body of arbitrary shape which is capable of oscillating 

about a horizontal axis passing through it. For small angles of swinging, its motion is simple 

harmonic with a period given by 

mgh

I
T 2=  

where I is the pendulum’s rotational inertia about the pivot, m is the pendulum’s mass, and h 

is the distance between the pivot and the pendulum’s centre of gravity as shown in Fig. 5.1. 

 

 
Fig. 5.1: Compound Pendulum 

 

A compound pendulum that oscillates from a suspension point (S) with period T (as 

shown in Fig. 5.1) can be compared with a simple pendulum of length L with the same period 

T. L is called the equivalent length of the compound pendulum. The point along the compound 

pendulum at a distance L from the suspension point is called the oscillation point (Fig. 5.1). In 

a compound pendulum these two points are interchangeable. 

Now using the time period expression of a simple pendulum,  

g

L
T 2=   

or, 
2

2
4

T

L
g =  

The acceleration due to gravity (g) at the place of the experiment can be measured by finding 

L and T graphically. 

S 

h 

m

g 

A 

B 

O 

G 
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Apparatus: 

  A bar pendulum, Stop watch, Meter Scale, Metal wedge, etc 

 

Brief Procedure:   

1. Label the ends of the compound pendulum bar as A and B.  

2. Locate the centre of gravity (G) of the bar.  

3. Measure the distance of holes (1, 2, 3,… and 9) from G for both sides. 

4. Insert a metal wedge in the 1st hole at end A and place the wedge on the clamp so that 

the bar can oscillate freely.  

5. Oscillate the bar horizontally. Be careful not to make the amplitude of oscillation too 

large. (Should be less than 5°). Note the time for 20 complete oscillations. Calculate 

the time period. 

6. Do this process at different holes (2, 3,  …..and 9).  

7. Repeat steps 3, 4 and 5 for end B. 

8. Draw a graph with distance as abscissa and time period as ordinate with the origin at 

the centre of gravity which is put at the middle of the graph paper along the abscissa. 

Put the length measured towards the end A to the left and that measured toward the end 

B to the right of the origin (see Graph 1). Draw a line parallel to the abscissa in such a 

way that it intersects at four points of the two curves as shown in Graph 1. Label these 

points as P, Q, R and S, respectively.  

9. Find out the equivalent length of the pendulum, L and time period, T (value of the period 

at point O) from the graph. 

10. Calculate the value of acceleration due to gravity using the given equation.  
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Experimental Data: 

Table-1: Table for the time period for end-A  
E

n
d

-A
 

Hole 

no. 

Distance of the hole 

from center of 

gravity (cm.) 

Time for 20 oscillations,  

(sec.) 

Mean time, t 

(sec.) 

Time period 

𝑇 =
𝑡

20
  

(sec.) 

1      

2      

3      

4      

5      

6 

     

7 

     

8 

     

9 
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Table-2: Table for the time period for end-B  

E
n

d
-B

 
Hole 

no. 

Distance of the hole 

from center of 

gravity (cm.) 

Time for 20 oscillations,  

(sec.) 

Mean time, t 

(sec.) 

Time period 

𝑇 =
𝑡

20
  

(sec.) 

1      

2      

3      

4      

5      

6 

     

7 

     

8 

     

9 
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Calculations: 

From graph 1:  Length, PR = (PO+OR) =                         cm    

Length, QS = (QO+OS) =                          cm 

 

Equivalent length to the Simple Pendulum, 
2

QSPR
L

+
=  =                           cm 

 

Time period, T =    sec 

 

The value of acceleration due to gravity, 
2

2
4

T

L
g = =               cm/s2 

 

 

 

 

Error Calculation: 

Standard value of the acceleration due to gravity = 981 cm/s2
 

 

Percentage error = 
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒 ~ 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒
 × 100 % 

 

 

 

Result: 

 

 

Discussions:  

Time period vs distance curves  

T
im

e 
p
er

io
d
, 
T

 (
se

c)
 

0 

End - B 

P Q R S 

End - A 

 

Distance of holes from center of gravity (cm) 

Graph I 

O 
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Experiment no 3:       Date: 

 

Name of the experiment: To determine the moment of inertia of a flywheel about its axis 

of rotation. 
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Experiment no 4:       Date: 

 

Name of the Experiment: Determination of the specific heat of a liquid by the method of 

cooling 

 

Theory: Newton’s law of cooling can be used to determine the specific heat of a liquid by 

observing the time taken by the liquid in cooling from one temperature to another. 
 

Suppose a liquid of mass M1 and specific heat S1 is enclosed within a calorimeter of mass m 

and specific heat s. The thermal capacity of the system is (M1S1+ms). If the temperature of the 

liquid falls from θ1 to 𝜃2 in timet1, then the average rate of loss of heat is  
 

(𝑀1𝑆1 + 𝑚𝑠)
(𝜃1 − 𝜃2)

𝑡1
 

 

If now the first liquid be replaced by an equal volume of second liquid of known specific heat 

(say water) under similar conditions and if the time taken by the second liquid to cool through 

the same range of temperature fromθ1 to 𝜃2 be t2, then the average rate of loss of heat is  

(𝑀2𝑆2 + 𝑚𝑠)
(𝜃1−𝜃2)

𝑡2
, 

 

where M2 and S2 are the mass and specific heat of the second liquid, respectively.  
 

Since the conditions are similar, these two rates are equal  
 

(𝑀1𝑆1 + 𝑚𝑠)
(𝜃1 − 𝜃2)

𝑡1
= (𝑀2𝑆2 + 𝑚𝑠)

(𝜃1 − 𝜃2)

𝑡2
 

or,  

𝑆1 =
𝑀2𝑆2𝑡1 + 𝑚𝑠(𝑡1 − 𝑡2)

𝑀1𝑡2
 

Apparatus: Double walled enclosure, Calorimeter, Thermometer, Heater, Stopwatch, etc. 

Brief Procedure: 

1. Clean and dry the calorimeter and measure the mass (m) of the calorimeter and stirrer using 

a balance.  

2. Pour water up to two-third volume of the calorimeter. Measure the total mass (m") of the 

calorimeter, water and stirrer. Calculate the mass (M2) of water. 

3. Put the calorimeter on the heater and hold the thermometer bulb in the middle of the water 

and raise the temperature around 62 oC. Keep the calorimeter into the double walled 

enclosure with the help of a tongs. Close the lid and fix the thermometer with holder so 

that its bulb is in the middle of the water.  

4. Start the stopwatch when the temperature just falls to 60 °C. Note this temperature in the 

table. Go on recording the temperature of water up to 20-25 minutes at an interval of one 

minute. Gently stir the water during the whole process. 

5. Pour out the water from the calorimeter and wipe it dry. Take experimental liquid in the 

calorimeter as the same volume of water. Repeat steps 2, 3 and 4 for liquid.  

6. On a graph paper, plot curves (both for water and liquid) by taking temperature as ordinate 

and time as abscissa (see Graph 1). Calculate t1 and t2 from the graph. 

7. Using the given formula, determine the specific heat of the given liquid. 
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Experimental data: 

Table: Time–temperature record for water and liquid 

No. of obs. Time (min) Temperature of water (℃) Temperature of liquid (℃) 

1 00   

2 01   

3 02   

4 03   

5 04   

6 05   

7 06   

8 07   

9 08   

10 09   

11 10   

12 11   

13 12   

14 13   

15 14   

16 15   

17 16   

18 17   

19 18   

20 19   

21 20   

22 21   

23 22   

24 23   

25 24   

26 25   

 

 

Mass of the calorimeter + stirrer, m =   g 

 

Mass of the calorimeter + stirrer + liquid, m =   g 
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Mass of the liquid, M1 = m – m =     g 

 

Mass of the calorimeter + stirrer + water, m =   g 

 

Mass of the water, M2 = m – m =     g 

 

Specific heat of the water, S2 = 1.00 Cal g-1℃-1 

 

Specific heat of the material of the calorimeter (Aluminum), s = 0.2096 Cal g-1℃-1 

         (Copper), s = 0.0909 Cal g-1℃-1 

 

 
Graph 1: Variation of temperature with time 

 

Calculations: 

Time taken by water to cool from θ1 =                 ℃ to 𝜃2 =                ℃ as obtained from the 

graph 1, t2 =               min 

 

Time taken by the liquid to cool from θ1 =              ℃ to 𝜃2 =               ℃ as obtained from the 

graph 1, t1 =                 min 

 

 

Specific heat of the liquid,  

𝑆1 =
𝑀2𝑆2𝑡1 + 𝑚𝑠(𝑡1 − 𝑡2)

𝑀1𝑡2
 

t1 

t2 

𝜃1 

𝜃2 T
em

p
er

at
u
re

 (
℃

) 

Time (min) 

Water 

Liquid 

Temperature vs time 
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Error Calculation: 

Standard value of the specific heat of turpentine is 0.42 Cal g-1℃-1
. 

 

Percentage error = 
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒 ~ 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒
× 100 % 

 

 

 

 

 

 

 

 

 

Result: 

 

 

 

 

 

 

Discussions: 
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Experiment no 5:       Date: 

 

Name of the Experiment: Determination of the value of the mechanical equivalent of heat 

(J) by electrical method 

 

Theory: The mechanical equivalent of heat J is the amount of electrical energy required to 

generate one calorie of heat. If E volt be the potential difference across a conducting coil (Fig. 

8.1) and i ampere be the current flowing through the coil for t seconds, then the electrical energy 

in the coil is Eit. If this energy is converted into heat H (calories) then the mechanical equivalent 

of heat J is 

𝐽 =
𝐸𝑖𝑡

𝐻
  Joules/Calorie 

 

If H is measured by means of a calorimeter with its contents where the temperature raises from 

𝜃1
° C to 𝜃2

° C then 

𝐻 = (𝑀𝑠 + 𝑊)(𝜃2 − 𝜃1), 
 

where M is the mass of the water in the calorimeter, s is the specific heat of water and W is the 

water equivalent of the calorimeter and stirrer. W can be calculated from the mass and specific 

heat of the calorimeter and stirrer. 

 

From equations (1) and (2), we get  

 

𝐽 =
𝐸𝑖𝑡

(𝑀𝑠 + 𝑊)(𝜃2 − 𝜃1)
Joules/Calories 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Apparatus: 

(1) 

(2) 

Fig. 8.1: Experimental setup for measuring the mechanical equivalent of heat 

Rh 

Power Supply 

+          − 
A 

V 
+         − 

+             − 
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Joule’s calorimeter set, Ammeter, Voltmeter, Stopwatch, Thermometer, Balance, 

Power Supply, Rheostat, Key, etc. 

 

Brief Procedure: 

1. Measure the mass (m1) of the calorimeter and stirrer using a balance. 

2. Pour water into the calorimeter which is just enough to dip the heating coil and the bulb of 

the thermometer. Then measure the total mass (m2) of the calorimeter, stirrer and water. 

Calculate the mass (M) of water. 

3. Place the heating coil into the calorimeter. Keep the calorimeter with heating coil into its 

insulating box. Fix the thermometer with holder so that its bulb is in the middle of the water 

but never touching the coil and the calorimeter. 

4. Complete the circuit as shown in Fig.8.1. Switch on the circuit temporarily and adjust the 

control knob of the power supply until the current is about 2 amperes. Then switch off the 

circuit and stir the water until a steady temperature is shown by the thermometer. Record 

this temperature as initial temperature. 

5. Switch on the circuit and start the stopwatch simultaneously. Then start recording the 

temperature, current and voltage in the table at an interval of every 1 minute. Keeping the 

current supply and stopwatch on, record these values for 10 minutes. Then switch off the 

circuit but allow the stopwatch to run on and record the temperature for further 10 minutes 

in the same manner. Stir the water gently during the whole process. 

6. Find the maximum and final temperatures. Use them to calculate the radiation correction.  

7. Calculate the water equivalent of the calorimeter. 

8. Using the given formula, determine the value of the mechanical equivalent of heat. 

 

Experimental data: 

Mass of the calorimeter + stirrer, m1 =   g 

 

Mass of the calorimeter + stirrer + water, m2 =   g 

 

Mass of the water, M = m2 – m1 =     g 

 

Specific heat of the water, s = 1 Cal g-1℃-1 

 

Specific heat of the material of the calorimeter (Aluminum), s1= 0.2096 Cal g-1℃-1 

(Copper), s1= 0.0909 Cal g-1℃-1 
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Table 1: Table for current, voltage and temperature 

No of 

observations 

Times 

(min) 

Current, i 

(amp.) 

Voltage, E 

(Volt) 

Temperature, T 

(℃) 

1 00 0 0 θi =  

2 01    

3 02    

4 03    

5 04    

6 05    

7 06    

8 07    

9 08    

10 09    

11 10    

Current Stopped 

12 11 0 0  

13 12 0 0  

14 13 0 0  

15 14 0 0  

16 15 0 0  

17 16 0 0  

18 17 0 0  

19 18 0 0  

20 19 0 0  

21 20 0 0 θf  = 
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Calculations: 

Water equivalent of the calorimeter, W = m1s1 =     g 

Initial temperature of the calorimeter + contents, 𝜃i=    ℃ 

Maximum temperature of the calorimeter + contents, 𝜃m =    ℃ 

Final temperature of the calorimeter + contents, 𝜃f =    ℃ 

Rise of temperature, θ = (𝜃m - 𝜃i)      ℃ 

Radiation correction, 𝜃r = (𝜃m - 𝜃f)/ 2 =     ℃ 

Corrected rise of temperature (𝜃2 - 𝜃1) = (𝜃 + 𝜃r) =    ℃ 

Time during which the current is passed, t =      sec 

Mean current during the interval t, i =      amp. 

Mean voltage during the interval t, E =      volt 

Mechanical equivalent of heat,  

𝐽 =
𝐸𝑖𝑡

(𝑀𝑠 + 𝑊)(𝜃2 − 𝜃1)
Joules/Calories 

 

 

 

 

 

Error Calculation: 

Standard value of the mechanical equivalent of heat, J is 4.2 Joules/Calories 
 

Percentage error = 
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒 ~ 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒
× 100 % 

   

  

 

 

 

Result: 

 

 

 

Discussions: 
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Experiment no 6:       Date: 

 

Name of the Experiment: Determination of the end-corrections of a meter bridge. 

 

Theory: 

A meter bridge consists of one meter long wire and has two gaps in which two 

resistances are placed. Consider, P and Q are the resistances in the two gaps in a meter bridge 

and when balance is obtained at the point N (say) of the wire (Fig. 4.1), applying the principle 

of Wheatstone bridge, we get 

 

𝑃

𝑄
=

𝑙𝜌

𝑚𝜌
=

𝑙

𝑚
=

𝑙

100 − 𝑙
, ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (𝑖) 

where l and m are the lengths of the bridge wire on the left and right hand side of the balance 

point and 𝜌 is the resistance per unit length of the wire. 

 

Usually there are some resistances at the two ends of the bridge wire due to soldering 

by which the wire is joined to the copper plates for which measured length of the bridge may 

not exactly coincide with the zero of the meter scale. These errors are known as end-errors. 

Due to these errors, eq. (1) has to be modified.  

 
Fig. 4.1: Circuit diagram for measuring the end corrections of a meter bridge 

 

The corrections are actually calculated in terms of two definite lengths x and y of the 

bridge wire for the two ends. These lengths should be added to the observed lengths l and m 

for balance. The values of x and y are called end-corrections. eq. (i) then becomes,  

 

𝑃

Q
=

(𝑙 + 𝑥)𝜌

(𝑚 + 𝑦)𝜌
=

𝑙 + 𝑥

𝑚 + 𝑦
=

𝑙 + 𝑥

(100 − 𝑙) + 𝑦
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (𝑖𝑖) 

 

If the two resistances P and Q are interchanged, a new balance is obtained at N'(say). If 

L is the length of the wire at N' from the left hand side (i.e., from zero), then  
 

l 100−l 

K 

G 

Rh 

Q P 



23 

 

𝑄

𝑃
=

𝐿 + 𝑥

(100 − 𝐿) + 𝑦
… … … … … … … (𝑖𝑖𝑖) 

Combining eq. (ii) and eq. (iii) we get, 

𝑙 + 𝑥

(100 − 𝑙) + 𝑦
=

(100 − 𝐿) + 𝑦

𝐿 + 𝑥
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (𝑖𝑣) 

Adding 1 on both sides of this eq. we get,  

 

100 + 𝑥 + 𝑦

100 − 𝑙 + 𝑦
=

100 + 𝑥 + 𝑦

𝐿 + 𝑥
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (𝑣) 

 So, we can write 

100 − 𝑙 + 𝑦 = 𝐿 + 𝑥 ⋯ ⋯ ⋯ ⋯ ⋯ (𝑣𝑖) 

From eq. (vi) we get, 

𝑦 = 𝐿 + 𝑥 − 100 + 𝑙 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (𝑣𝑖𝑖) 

Calling the ratio   
𝑃

𝑄
= 𝑟 and substituting eq. (𝑣𝑖𝑖) into eq. (ii) on right hand side, finally we 

get, 

𝑥 =
𝑙 − 𝑟𝐿

𝑟 − 1
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (𝑖𝑥) 

 

Again substituting eq. (ix) into eq. (vii), finally we get 

𝑦 =
𝑟𝑙 − 𝐿

𝑟 − 1
− 100 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (𝑖𝑥) 

Apparatus: 

Meter bridge, Commutator, Battery, Resistance boxes, Rheostat, Jockey,  

Galvanometer, Connecting wires, etc. 

 

 

Brief procedure: 
 

1. Connect the circuit as shown in the Fig. 4.1. In order to check the correctness of the 

circuit, with the commutator on, put the jockey in contact to the left side and then to 

right side of the meter bridge wire. If deflections of the galvanometer are in opposite 

directions, the connections are correct. 
 

2. Select 1 Ω in left gap (P) and 10 Ω in right gap (Q). Slide the jockey on the wire until 

the galvanometer shows zero deflection. Record the distance (l) of the null point from 

the left end of the wire. Reverse the current with commutator and measure l again. 

Record mean distance l in the table. 
 

3. Interchange the resistances P and Q by selecting 10 Ω in the left gap and 1 Ω in the 

right gap. Record the distance (L) of the null point from the left end of the wire. 

Reverse the current with commutator and measure L again. Record mean distance Lin 

the table. 
 

4. Calculate x and y by using the given equations. 
 

5. Repeat step 2 and step 3 for different sets of values for P and Q (e.g. P = 1, Q = 15; P 

= 1, Q = 20; P = 1, Q = 25;……; etc) and calculate the corresponding values of x and 

y.  
 

6. Calculate mean values of x and y. 
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Experimental Data: 

Table: Data for the end corrections of the meter bridge 

 

Calculation: 

𝑥 =
𝑙−𝑟𝐿

𝑟−1
cm =  

 

 𝑦 =
𝑟𝑙−𝐿

𝑟−1
− 100  cm =  

Result: 

 

 

Discussions: 

  

No. 

of  

obs. 

Resistance () Ratio Balance points  (cm.) 

x 

 

(cm) 

y 

 

(cm) 

Mean 

x 

( cm) 

Mean   

y 

( cm) 

 Left 

gap 

Right 

gap 

 

𝑟 =
𝑃

𝑄
 

 

Direct Reverse mean 

1 

 

P = 1 

 

 

Q = 10 

 
 

  l= 

  

  

Q = 10 P = 1   L= 

2 

  

 

   

  

     

3 

  

 

   

  

     

4 

  

 

   

  

     

5 
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Experiment no 7:       Date: 

 

Name of the Experiment: Determination of the value of a given low resistance by the 

method of fall of potential. 
 

Theory: 

 
 

The circuit arrangement required for determining an unknown low resistance by the method of 

fall of potential is shown in Figure 1.1. In this circuit R is a low resistance of known value 

while X is an unknown low resistance connected to the gaps G1 and G2, respectively of a meter 

bridge. Through a commutator two poles of the power supply are connected to the two 

terminals B1 and B6 of the meter bridge. On reaching the terminal B1 the current is divided into 

two directionsi1 and i2. i2 flows through the low resistance while i1 flows through the bridge 

wire. When the four way key points a, b, c and dare connected in turn to the galvanometer it 

will produce null deflections fora', b', c' and d' points on the bridge wire, i.e., the points a, b, c 

and d are equipotential with a', b', c' and d', respectively. Then 

 

𝑉a = 𝑉a′, 𝑉b = 𝑉b′𝑉c = 𝑉c′, and      𝑉d = 𝑉d′ 

or,  

𝑉a − 𝑉b = 𝑉a′ − 𝑉b′and𝑉c − 𝑉d = 𝑉c′ − 𝑉d′ 

or,  

𝑖2𝑅 = 𝑖1𝑙1𝜌and𝑖2𝑋 = 𝑖1𝑙2𝜌, 

 

where 𝑙1 = b′ − a′,  𝑙2 = d′ − c′ and ρ is the resistance per unit length of the bridge wire. From 

the last pair of equations we have  

𝑅

𝑋
=

𝑙1

𝑙2
 

or, 

𝑋 = 𝑅
𝑙2

𝑙1
 

Now knowing R, X can be determined by measuring l1 and l2.  

a d 

B1 B6 

R X 

G 

i2 i1 

G1 G2 

l1 l2 

a' b' c' d' 

B2 B3 B4 B5 

E 

Rh 

K 

 

b c 

 

G 

Fig. 1.1: Circuit diagram for measuring the low resistance 
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Apparatus: 

Meter bridge, Battery, Low resistances, A four way key, Commutator, Rheostat, Galvanometer, 

Jockey, Connecting wires, etc. 

 

 

 

Brief procedure: 

 

1. Clean connecting wires with sand paper and make neat and tight connections as per 

the circuit shown in fig. 1.1. In order to check the correctness of the circuit, with the 

commutator on, put the plug key to b of the four-way key and place the jockey in 

contact to the left side of the meter bridge wire. Then put the jockey to right side of 

the meter bridge wire. If deflections of the galvanometer are in opposite directions, 

the connections are correct. 

 

2. Introduce a value of known resistance, R (Say R = 0.1 Ω). 

 

3. Put the plug key to a of the four-way key and then slide the jockey on the meter 

bridge wire to get a null point (i.e. the galvanometer deflection is zero) on the meter 

bridge for both direct and reverse current. 

 

4. In the similar way, find the null points for b, c and d of the four-way key. 

 

5. Calculate the value of low resistance, X by using the given formula. 

 

6. Repeat steps 2 to 5 for different values of R. 
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Experimental data: 

 

Table 1: Data for the low resistance 

No of 

obs. 

(N) 

Known 

resistance, 

R 

(Ω) 

Position 

of null 

points 

Null points  (cm) 
l1 = 

b'-a' 

(cm) 

l2 = 

d'-c' 

(cm) 

Xi=Rl2/

l1 

 

(Ω) 

Direct Reverse Mean 

01 0.1 

a'    

   

b'    

c'    

d'    

02 0.2 

a'    

   

b'    

c'    

d'    

03 0.4 

a'    

   

b'    

c'    

d'    

04 0.6 

a'    

   

b'    

c'    

d'    

05 0.8 

a'    

   

b'    

c'    

d'    
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Table 2: Data for standard deviation 

No of 

obs. 

(N) 
 

𝑋𝑖 

(Ω) 

Mean  

𝑋̅ 

(Ω) 

(𝑋𝑖 − 𝑋̅)2 

 

(Ω2) 

𝜎 = ±√
∑ (𝑋𝑖 − 𝑋̅)2𝑁

𝑖=1

𝑁
 

(Ω) 

1  

 

 

 

2   

3   

4   

5   

 ∑(𝑋𝑖 − 𝑋̅)2

𝑁

𝑖=1

=  

 

Calculation: 

 

𝑋 = 𝑅
𝑙2

𝑙1
 = 

 

𝜎 = ±√
∑ (𝑋𝑖−𝑋̅)2𝑁

𝑖=1

𝑁
 =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Result: 

 

 

 

Discussions: 
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Experiment no 8:       Date: 

 

Name of the Experiment: Determination of the resistance of a galvanometer by half 

deflection method. 

 

Theory: 

The circuit arrangement required for finding the resistance ‘G’ of a galvanometer by half 

deflection method is shown in Figure 2.1. In this circuit the shunt resistance S is very small 

compared to the galvanometer resistance G, and then the potential difference, V between the 

ends of the shunt resistance S remains nearly constant for all values of R1. 

 
 

When R1 = 0, then the galvanometer current Ig is given by 

 

𝐼𝑔 =
𝑉

𝐺
= 𝑘𝑑, 

where d is the deflection in the galvanometer, k is the galvanometer constant. If now a 

resistance R1 is introduced in the galvanometer circuit such that the deflection reduced to d/2, 

then 

𝐼′𝑔 =
𝑉

𝐺 + 𝑅1
= 𝑘

𝑑

2
 

where 𝐼′𝑔 is the new galvanometer current in the changed circumstances. 

 

Dividing equation (1) by equation (2), we get 

 

𝐺 + 𝑅1

𝐺
= 2 

or, 

𝐺 + 𝑅1 = 2𝐺 

or, 

𝐺 = 𝑅1 

Hence by measuring𝑅1, 𝐺 can be found.  

R1 

E 

G 

S 

R 

K 

Fig. 2.1: Circuit diagram for measuring the resistance of galvanometer 

(2) 

 

(1) 

, 
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Apparatus: 

Galvanometer, Shunt Box, Resistance boxes, Commutator, Battery, Connecting wires, 

etc. 

Brief procedure: 

 

1. Clean connecting wires with sand paper and make neat and tight connections as per the 

circuit shown in fig. 2.1. In order to check the correctness of the circuit, place two plugs 

in the opposite holes of the commutator and see the direction of defection of the 

galvanometer pointer. Now place the plugs in the other holes of the commutator and 

see the deflection of the galvanometer pointer again. If the deflections are in opposite 

directions, the connections are correct. 

2. Insert a small value of shunt resistance S (e.g. S = 0.1 Ω). 

3. Making R1=0, Apply a suitable value of resistance (20 Ω, 50 Ω, etc) from resistance 

box R in the circuit and change it until you obtain a measurable even number deflection 

(16 – 30 divisions) on the galvanometer dial. Note this deflection. 

4. Keeping the resistance R constant, adjust the value of R1 until the deflection is reduced 

to half. 

5. Record the value of R1 which is numerically equal to the galvanometer resistance G. 

6. Reverse the current with the commutator K and repeat the whole operation to get the 

resistance of the galvanometer with reverse current. 

7. Repeat the steps 2 to 6 for other value of S.     
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Experimental Data: 

Table 1: Table for the resistance of the galvanometer  

No of 

obs. 

(N) 

Shunt 

Resistance, S 

(Ω) 

Resistance, 

R 

(Ω) 

Current 

direction 

Resistance, 

𝑅1 

(Ω) 

Deflection, 

d 

(arbitrary 

unit) 

Galvanometer 

resistance, 

𝐺 = 𝑅1 

(Ω) 

Mean,  
𝐺𝑖(Ω) 

1 0.1 

 Direct 
  

 

 
  

 Reverse 
  

 
  

2 0.2 

 Direct 
  

 

 
  

 Reverse 
  

 
  

3 0.4 

 Direct 
  

 

 
  

 Reverse 
  

 
  

4 0.5 

 Direct 
  

 

 
  

 Reverse 
  

 
  

5 0.6 

 Direct 
  

 

 
  

 Reverse 
  

 
  

6 0.7 

 Direct 
  

 

 
  

 Reverse 
  

 
  

7 0.8 

 Direct 
  

 

 
  

 Reverse 
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Table 2: Calculation of standard deviation 

No of 

obs.  

(N) 

Galvanometer  

resistance, 

𝐺𝑖 

(Ω) 

Mean  

𝐺̅ 

(Ω) 

(𝐺𝑖 − 𝐺̅)2 

 

(Ω2) 

𝜎 = ±√
∑ (𝐺𝑖 − 𝐺̅)2𝑁

𝑖=1

𝑁
 

(Ω) 

1  

 

 

 

2   

3   

4   

5   

6   

7   

 ∑(𝐺𝑖 − 𝐺̅)2

𝑁

𝑖=1

=  

 

 

 

Calculation: 

𝜎 = ±√
∑ (𝐺𝑖 − 𝐺̅)2𝑁

𝑖=1

𝑁
 

 

 

 

 

 

 

 

 

Result: 

 

 

 

Discussions: 
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Experiment no 9:       Date: 

 

Name of the Experiment: Determination of the radius of curvature of a plano-convex lens 

by Newton’s rings. 

 

Theory: 

The phenomenon of Newton's rings is an interference pattern caused by the reflection 

and transmission of light between a spherical surface and an adjacent flat surface which form 

a air thin film. When viewed with monochromatic light as shown in Fig. 6.1a, it appears as a 

series of concentric, alternating bright and dark rings as shown in Fig. 6.1b centered at the point 

of contact between the two surfaces.  

 

 

 

 

 

 

 

 

 

 

 

 

                         

 

Fig.6.1: (a) Experimental setup of Newton's rings. (b) Pattern of the rings 

 

Now the diameters of the nth bright or dark rings are 

Dn
2 = 2(2n + 1)R (Bright Rings) 

Dn
2 = 4nR,   (Dark Rings) 

where R is the radius of curvature of the lens and λ is the wavelength of the monochromatic 

light. 
 

Similarly, the diameters of the (n+p)th bright or dark rings are 

Dn+p
2 = 2[2(n+ p) + 1]R   (Bright Rings) 

Dn+p
2 = 4(n + p)R   (Dark Rings) 

Subtracting Dn
2 from Dn+p

2, we have 

Dn+p
2 - Dn

2 = 4pR, for either bright or dark rings, 

or, 
p

DD
R npn

4

22
−

=
+  

The above equation is employed to compute the radius of curvature R of a lens. 

 

(a)                                                                      (b) 
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Apparatus:  

Travelling microscope, Plano-convex lens, Sodium lamp set, etc. 

 

Brief Procedure:  

1. Determine the least count (L. C.) (mentioned in experiment no. 1) of the micrometer 

screw of the travelling microscope. 

2. Set the intersecting point of the cross-wires of the eye piece at the middle of the central 

dark spot. 

3. Slide the cross-wires to 12th dark ring on the left side of the central dark spot. 

4. Set the vertical line of the cross-wire tangentially to 10th dark ring and note the readings 

of the linear scale and circular divisions. 

5. Set the cross-wire in the same manner to the 9th, 8th,………., 1st rings by sliding the 

microscope in the same direction. 

6. Cross the central dark spot by sliding the cross-wires and note the scale readings by 

setting the cross-wire to the right side of the 1st ring. 

7. Now move the cross-wires in the same direction and record the scale readings in the 

same manner for successive dark rings up to the 10th ring on the right side. 

8. Draw a best fit straight line through origin on a graph paper with square of the diameter 

as ordinate and number of the ring as abscissa. Calculate the slope of the line.  

9. Calculate the radius of curvature of the plano-convex lens by using the given equation. 

 

 

 

 

 

 

 

 

Experimental Data: 

Least Count (L.C.) of the micrometer scale 

L. C. = 
𝑃𝑖𝑡𝑐ℎ

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑠𝑐𝑎𝑙𝑒
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Table: Table for the diameter of the rings 

R
in

g
 n

o
. 

Readings of the microscope 

D
ia

m
et

er
, 

D
 =

 L
~

R
 (

cm
) 

D
2
 (

cm
2
) 

Left Side (L) Right Side (R) 
L

in
ea

r 
sc

al
e 

 r
ea

d
in

g
, 

 x
 

(c
m

) 

C
ir

cu
la

r 
sc

al
e 
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iv

is
io

n
, 

d
 

L
ea

st
 c

o
u

n
t,

 L
c 

(c
m

) 

C
ir

cu
la

r 
sc

al
e 

 r
ea

d
in

g
, 
 

y=
d

×
 L

c 
(c

m
) 

 

T
o

ta
l,

 x
+

y 
(c

m
) 

L
in

ea
r 

sc
al

e 
re

ad
in

g
, 

x 

(c
m

) 

C
ir

cu
la

r 
sc

al
e 

d
iv

is
io

n
, 

d
 

 

L
ea

st
 c

o
u

n
t,

 L
c(

cm
) 

 
C

ir
cu

la
r 

sc
al

e 
re

ad
in

g
, 

  
y=

d
×

 L
c 

(c
m

) 

T
o

ta
l,

 x
+

y(
cm

) 

1   

 

    

 

    

2 

          

3 

          

4 

          

5 

          

6 

          

7 

          

8 

          

9 

          

10 
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Calculation:  

From graph 1, slope = 
npn

DD
npn

−+

−+

)(

22

 

 

 

 

 

 

 

 

4

Slope
R =  cm

 
 

 

 

 

 

 

 

 

Result: 

 

 

 

 

 

Discussions: 

Graph 1 

Ring number 
n+p n 

D2
n+p 

D2
n 

p 

D
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m
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q
u
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e 
(c

m
2
) 

Square of the diameter vs ring number 

 


