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1 The Hydrogen Like Atom

A hydrogen atom or a hydrogen like atom (He™, Li*T, Be™, etc.) consists of an atomic
nucleus of charge Ze and an electron of charge —e. Their mutual interaction is given by
the Coulomb potential
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where ry = ri(z1,y1,21) and ry = ry(29, Y2, 22) are the electron and nucleus position
vectors, respectively. The time-independent Schrodinger equation for the system is given

by
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where m; and ms are the masses of electron and nucleus, respectively and the Laplacians
are given in cartesian coordinate as
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1.1 Separation of the Center of Mass Motion

Since V' depends only on the relative distance between the electron and nucleus, instead
of the position vectors of the electron and nucleus, it is more appropriate to use the
coordinates of the center of mass, R = R(X,Y, Z), and the relative coordinates of the
electron with respect to the nucleus, r = r(x,y, z). The transformation from coordinates
(r; , ra) to coordinates (R, r) is given by introducing the relative coordinate

r=r;—ry (4)

and the vector
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which determines the position of the centre of mass system. We write ¥(ry,r2) = V(R, 1)
to show
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In three dimension
Vi=Lvp+v (7)
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where p is the reduced mass defined as

1 1 1 mi + Mo
1] my mo mims '

Similarly Vy can be written as
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Changing variables from the coordinates (ry, rs) to the new coordinates (R, r), we find
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where M = my + my is the total mass of the system. The Schrodinger equation (2)
therefore becomes
h? h?
{—WV% - ZVQ + V(?“)} \I/(R,, I‘) = Etot\If(R, I'). (11)
Since R and r are independent to each other the wave function ¥(R, r) can be separated
into a product of functions of the centre of mass coordinate R and of relative coordinate
r as V(R,r) = ®(R)y(r). With this the Schrédinger equation (11) can be written as
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Thus, we have the following two separate equations
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and
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with the condition Fis = Fov + E.

Thus, we have reduced the Schrodinger equation (11), which involves two variables R
and r , into two separate equations (13) and (14) each involving a single variable. Note
that equation (13) shows that the center of mass moves like a free particle of mass M.
The solution to this kind of equation has the form

O(R) = (2m) 732 kR (15)

where k is the wave vector associated with the center of mass. The constant Fcy = h2k?/(2M)
gives the kinetic energy of the center of mass in the laboratory system (the total mass
M is located at the origin of the center of mass coordinate system).

The second equation (14) represents the Schrodinger equation of a fictitious particle of
mass 4 moving in the central potential
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We should note that the total wave function U(R, r) is seldom used. When the hydrogen
like problem is mentioned, this implicitly refers to ¢(r) and E. That is, the hydrogenic
wave function and energy are taken to be given by ¢(r) and E, not by V(R,r) and
FEio: This is because nucleus is much massive then electron and compare to the motion
of electron nucleus remain stationary. Since we are only interested to the motion of
electron the Schrodinger equation of the hydrogen like atom is given by (14).

1.2 Separation of the Schrodinger Equation in Spherical Polar
Coordinates

The Schrodinger equation (14) for the relative motion has the form of an equation for a
central potential with Hamiltonian
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where L? is the square of the magnitude of the orbital angular momentum and defined
as
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The corresponding time-independent Schrodinger equation is
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In order to simplify the solution of this equation we notice that L? do not operate on
the radial variable r. Since the spherical harmonics Y;,,(6, ¢) are eigenfunctions of L2
we can look for solution of the Schrédinger equation (19) having the separable form
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where R;(r) is the radial function which remains to be found. It is worth stressing
that the angular dependence of the eigenfunction (20) is entirely given by the spherical
harmonics Y}, (6, ¢) characterised by the orbital angular momentum quantum number [
and magnetic quantum number m.

1.3 Solution of the Radial Equation

Inserting (20) into the Schrodinger equation (19) and using the fact that LY}, (0, ¢) =
7211+ 1)Y;,n(0, ¢), we obtain for the radial function the differential equation

{_ﬁ—Qig (r2§> GtV V(T)} Ry(r) = ERy(r). (21)
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Note that the magnetic quantum number m does not appear in this equation. Therefore
the radial function is independent of this quantum number. In the domain of the variable
r, the angular momentum contribution #%/(l + 1)/(2ur?) acts as an effective addition
to the potential energy. It can be identified with centrifugal force, which pulls the
electron outward, in opposition to the Coulomb attraction. Carrying out the successive
differentiations in (21) and simplifying, we obtain
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another second-order linear differential equation with non-constant coefficients.
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1.3.1 Asymptotic solution of the radial wave function

First we explore the asymptotic solutions to (22), as r — oo. In the asymptotic approx-
imation,
_ 2p[E]
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having noted that the energy F is negative for bound states. Solutions to (23) are
Ri(r) = Ae~ VBT o poy/2ul B/ T (24)

where A and B are constants to be determined. We reject the positive exponential on
physical grounds, since R;(r) — oo as r — oo, in violation of the requirement that the
wave function must be finite everywhere. Choosing the negative exponential (B = 0)
and setting
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the ground state energy in the Bohr theory (in center of mass system), we obtain
Ry(r) = Ae=2r/an (26)
where a,, is the modified Bohr radius
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with ag being the Bohr radius.

It turns out, very fortunately, that this asymptotic approximation is also an exact so-
lution of the Schrédinger equation (22) with [ = 0. The solutions to (22), designated
R, (1), are labelled by n, known as the principal quantum number, as well as by the
orbital angular momentum [, which is a parameter in the radial equation. The solution
(26) corresponds to Ryo(r). This should be normalized according to the condition

/OOO[Rm(r)]2r2dr = 1. (28)

Using the definite integral fooo re="dr = nla~ "1 we get the normalized radial func-
tion
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Since this function is nodeless, we identify it with the ground state of the hydrogen like
atom. Multiplying (29) by the spherical harmonic Yy(#,#) = 1/v/47m, we obtain the
total wave function
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The wave function of the hydrogen atom in ground state is found from (30) by setting
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1.3.2 General solution of the radial wave function

The normalized radial function for the bound state of hydrogenic atom has a rather
complicated form which we give without proof:
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Here Lf is an associated Laguerre polynomial. The first few radial eigenfunctions (32)
are given by
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and are illustrated in Fig. 1.

1.4 The Hydrogenic Wave Function

The solutions of the hydrogenic Schrodinger equation in spherical polar coordinates can
now be written in full

¢nlm (’I“, 97 ¢) = an(T)Ylm(Q, qb) (39)
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Figure 1: The first few radial functions R,;(r) for hydrogen. The radial length is in units of
the Bohr radius ag. Notice that R,,;(r) has (n — 1 — 1) nodes. [N. Zettili]

where n = 1,2, 3, ... is the principle quantum number, [ = 0,1,2,...,n— 1 is the orbital
angular momentum quantum number and m = 0, +1,£2...+/[ is the magnetic quantum
number.
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