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1 Operator

The wave function or de Broglie wave for a free particle with momentum p and energy
E is given by

Ψ(x, t) = ei(kx−ωt), (1)

where ω and k are determined from

p = }k, E = }ω, E =
p2

2m
.

The wave function (1) represents a state of definite momentum and is also written as

Ψ(x, t) = ei(px−Et)/}. (2)

Since the wave function contains all the information about the system, it is often of
interest to find appropriate operators to extract information from the wave function. To
extract the value of momentum from the wave function (1) or (2) we need an operator
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which must be, roughly, a derivative with respect to x. In fact we take

}
i

∂

∂x
Ψ(x, t) =

}
i

∂

∂x
ei(kx−ωt)

=
}
i

(ik) ei(kx−ωt)

=
}
i

(ik) Ψ(x, t)

= }kΨ(x, t)

= pΨ(x, t) (3)

where the p factor in the right-hand side is just the momentum. We thus identify the

operator
}
i

∂

∂x
as the momentum operator p̂

p̂ ≡ }
i

∂

∂x
= −i} ∂

∂x
(4)

and we have verified that acting on the wave function Ψ(x, t) for a particle of momentum
p it gives p times the wave function:

p̂Ψ(x, t) = −i} ∂
∂x

Ψ(x, t) = pΨ(x, t). (5)

The momentum operator acts on wave functions, which are functions of space and time
to give another function of space and time. Since p̂ acting on Ψ(x, t) gives a number
(p, in fact) times Ψ(x, t) we say that Ψ(x, t) is an eigenstate of p̂. The matrix algebra
analogy is useful: matrices are the operators and column vectors are the states. Matrices
act by multiplication on column vectors. An eigenvector of a matrix is a special vector.
The matrix acting on an eigenvector gives a number times the eigenvector. After the
action of the matrix the direction of the vector is unchanged but its magnitude can be
scaled. The same for eigenstates of operators: an operator acting on an eigenstate gives
the eigenstate up to a multiplicative constant. We also say that Ψ(x, t) is a state of
definite momentum.

Let us now consider extracting the energy information from the free particle wave func-
tion. This time we must avail ourselves of the time derivative:

i}
∂

∂t
Ψ(x, t) = i}

∂

∂t
ei(kx−ωt)

= i} (−iω) ei(kx−ωt)

= i} (−iω) Ψ(x, t)

= }ωΨ(x, t)

= EΨ(x, t). (6)

Hence we define the total energy operator Ê such that

Ê = i}
∂

∂t
. (7)
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Now, for a free particle the total energy is the kinetic energy and is given in terms of
momentum such that

E =
p2

2m
. (8)

We can use (8) to construct the relevant energy operator (which is the kinetic energy for
a free particle) in terms of the momentum. By using (8) on the right-hand side of (6) we
write

EΨ =
p2

2m
Ψ =

p

2m
pΨ =

p

2m
p̂Ψ =

p

2m
(−i})

∂

∂x
Ψ (9)

where we used (5) to write pΨ as the momentum operator acting on Ψ. Since p is a
constant we can move the p factor on the last right-hand side close to the wave function
and then replace it by the momentum operator:

EΨ =
1

2m
(−i})

∂

∂x
pΨ

=
1

2m
(−i})

∂

∂x
(−i})

∂

∂x
Ψ

= − }2

2m

∂2Ψ

∂x2
. (10)

This can also be written as

EΨ =
1

2m
p̂p̂Ψ =

p̂2

2m
Ψ, (11)

which suggests the following definition of the energy operator (for a free particle):

Ê ≡ p̂2

2m
= − }2

2m

∂2

∂x2
. (12)

For the free particle wave function (1) we show that

ÊΨ(x, t) = − }2

2m

∂2Ψ(x, t)

∂x2

= − }2

2m

∂2

∂x2
ei(kx−ωt)

= − }2

2m
(ik)2ei(kx−ωt)

=
}2k2

2m
Ψ(x, t)

=
p2

2m
Ψ(x, t)

= EΨ(x, t) (13)

To be more precise (12) is the kinetic energy operator and to be written as

T̂ ≡ − }2

2m

∂2

∂x2
. (14)
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Suppose now that our quantum particle is not free but rather is moving in some external
potential V (x, t). In this case, the total energy of the particle is no longer simply kinetic,
it is the sum of kinetic and potential energies:

E =
p2

2m
+ V (x, t). (15)

This naturally suggests that the total energy operator should take the form

Ê =
p̂2

2m
+ V (x, t)

= − }2

2m

∂2

∂x2
+ V (x, t). (16)

The first term, as we already know, involves second derivatives with respect to x. The
second term acts multiplicatively: acting on any wave function Ψ(x, t) it simply multiplies
it by V (x, t).

At this point, we introduce another very important operator: the position operator x̂
that acting on functions of x gives another function of x as follows:

x̂f(x) ≡ xf(x). (17)

Note that it follows from this equation and successive applications of it that

x̂kf(x) ≡ xkf(x). (18)

If the potential V (x, t) can be written as some series expansion in terms of x it then
follows that

V (x̂, t)Ψ(x, t) ≡ V (x, t)Ψ(x, t). (19)

The operators we are dealing with (momentum, position, Hamiltonian) are all declared
to be linear operators. A linear operator Â satisfies

Â(aφ) ≡ aÂφ, Â(φ1 + φ2) ≡ Âφ1 + Âφ2 (20)

where a is a constant. Two linear operators Â and B̂ that act on the same set of objects
can always be added

(Â+ B̂)φ ≡ Âφ+ B̂φ. (21)

They can also be multiplied, the product ÂB̂ is a linear operator defined by

ÂB̂φ ≡ Â(B̂φ), (22)

meaning that you act first with B̂, which is closest to φ and then act on the result with
Â. The order of multiplication matters and thus ÂB̂ and B̂Â may not be the same
operators.
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2 Commutator

The commutator of two operators Â and B̂, denoted by [Â, B̂], is defined by

[Â, B̂] ≡ ÂB̂ − B̂Â, (23)

and the anticommutator {Â, B̂} is defined by

{Â, B̂} ≡ ÂB̂ + B̂Â. (24)

Two operators are said to commute if their commutator is equal to zero and hence
ÂB̂ = B̂Â. Any operator commutes with itself:

[Â, Â] = 0 (25)

The commutator also satisfies the following properties:

[Â, B̂] = −[B̂, Â]

[Â, B̂ + Ĉ] = [Â, B̂] + [Â, Ĉ] (26)

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ] (27)

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂ (28)

0 = [Â, [B̂, Ĉ]] + [B̂, [Ĉ, Â]] + [Ĉ, [Â, B̂]]. (29)

We have operators x̂ and p̂ that are clearly somewhat related. We would like to know
their commutator [x̂, p̂]. For this we let [x̂, p̂] act on some arbitrary function φ(x) and
then attempt simplification.

[x̂, p̂]φ(x) = (x̂p̂− p̂x̂)φ(x)

= x̂p̂φ(x)− p̂x̂φ(x)

= x̂(p̂φ(x))− p̂(x̂φ(x))

= x̂

(
−i}∂φ(x)

∂x

)
− p̂(xφ(x))

= −i}x∂φ(x)

∂x
+ i}

∂

∂x
(xφ(x))

= −i}x∂φ(x)

∂x
+ i}x

∂φ(x)

∂x
+ i}φ(x)

= i}φ(x), (30)

so that, all in all, we have shown that for arbitrary φ(x) one has

[x̂, p̂]φ(x) = i}φ(x). (31)

Since this equation holds for any φ(x) it really represents the equality of two operators.
Whenever Âφ(x) = B̂φ(x) for arbitrary φ(x) we simply say that Â = B̂. The operators
are the same because they give the same result acting on anything! We have therefore
discovered the most fundamental commutation relation in quantum mechanics:

[x̂, p̂] = i}. (32)
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The right hand side is a number, but should be viewed as an operator (acting on any
function it multiplies by the number). This commutation relation can be used to prove
Heisenbergs uncertainty principle, which states that the product of the position uncer-
tainty and the momentum uncertainty must always exceed }/2.

The idea that operators can fail to commute may remind you of matrix multiplication,
which is also non-commutative. We thus have the following correspondences:

operators ↔ matrices

wave functions ↔ vectors (33)

eigenstates ↔ eigenvectors

One can in fact formulate Quantum Mechanics using matrices, so these correspondences
are actually concrete and workable.

As an example of useful matrices that do not commute, consider the Pauli matrices, three
two-by-two matrices given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (34)

Actually these matrices are exactly what is needed to consider spin one-half particles.
The spin operator S has three components Si = }

2
σi. Let us now see if σ1 and σ2 commute.

σ1σ2 =

(
0 1
1 0

)(
0 −i
i 0

)
=

(
i 0
0 −i

)

σ2σ1 =

(
0 −i
i 0

)(
0 1
1 0

)
=

(
−i 0
0 i

)
Therefore

[σ1, σ2] =

(
2i 0
0 −2i

)
= 2i

(
1 0
0 −1

)
= 2iσ3. (35)

In fact, one can also show that

[σ2, σ3] = 2iσ1 [σ3, σ1] = 2iσ2. (36)

Matrix mechanics was worked out in 1925 by Werner Heisenberg and clarified by Max
Born and Pascual Jordan. Note that, if we were to write x̂ and p̂ operators in matrix
form, they would require infinite dimensional matrices. One can show that there are
no finite size matrices that commute to give a number times the identity matrix, as is
required from (32). This should not surprise us: on the real line there are an infinite
number of linearly independent wave functions, and in view of the correspondences in
(33) it would suggest an infinite number of basis vectors. The relevant matrices must
therefore be infinite dimensional.

For three dimension just like we defined a position operator x̂, we now have three position
operators (x̂, ŷ, ẑ) making up r̂, that is

r̂ ≡ (x̂, ŷ, ẑ) (37)
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Similarly for three dimension we define the momentum operator p̂ as follows:

p̂ ≡ −i}∇ (38)

where ∇ = (
∂

∂x
,
∂

∂y
,
∂

∂z
) is the gradient operator. If we call the momentum components

(p1, p2, p3) = (px, py, pz) and the coordinates as (x1, x2, x3) = (x, y, z) then we have that
the components of the above equation are

p̂k = −i} ∂

∂xk
, k = 1, 2, 3. (39)

With three position and three momentum operators, we now should state the nine pos-
sible commutation relations. If you recall our derivation of [x̂, p̂] = i} you will note that
the commutator vanishes unless the subscripts on x̂ and p̂ are the same. This means that
we have

[x̂i, p̂j] = i} δij, (40)

where the Kronecker delta is defined by

δij =

{
1 if i = j,
0 if i 6= j.

(41)

In a nutshell for the components of r̂ and p̂ we have

[x̂, p̂x] = [ŷ, p̂y] = [ẑ, p̂z] = i} (42)

and

[x̂, p̂y] = [x̂, p̂z] = [ŷ, p̂x] = [ŷ, p̂z] = [ẑ, p̂x] = [ẑ, p̂y] = 0 (43)

3 The Schrödinger equation

Let us consider the free particle and find a differential equation for which the de Broglie
wave function (1) is a solution. Consider (6) and using (10) for the right-hand side we
have

i}
∂

∂t
Ψ(x, t) = − }2

2m

∂2

∂x2
Ψ(x, t). (44)

This is the free-particle Schrödinger equation. More schematically, using the energy
operator, it can be written as

i}
∂

∂t
Ψ(x, t) = ÊΨ(x, t). (45)
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It is worth re-checking that our de Broglie wave function satisfies the Schrödinger equation
(44). Indeed for Ψ(x, t) = ei(kx−ωt) we find

i}(−iω)Ψ = − }2

2m
(ik)2Ψ (46)

which is a solution since the Ψ factors cancel and all that is needed is the equality

}ω =
}2k2

2m
, (47)

which is recognized as the familiar relation E = p2/(2m).

In case of a particle in a potential V (x, t) we take the form (45) and replace Ê by the
energy operator in (16) to postulate the Schrödinger equation as

i}
∂

∂t
Ψ(x, t) =

(
− }2

2m

∂2

∂x2
+ V (x, t)

)
Ψ(x, t). (48)

The energy operator Ê is usually called the Hamiltonian operator Ĥ, so one has

Ĥ ≡ − }2

2m

∂2

∂x2
+ V (x, t), (49)

and the Schrödinger equation takes the form

i}
∂

∂t
Ψ(x, t) = ĤΨ(x, t). (50)

The Schrödinger equation has an explicit i on the left-hand side. This i shows that it is
impossible to find a solution for real Ψ. If Ψ were real the right-hand side of the equation
would be real but the left-hand side would be imaginary. Thus, the Schrödinger equation
forces us to work with complex wave functions.

Note also that the Schrödinger equation does not take the form of a conventional wave
equation. A conventional wave equation for a variable φ takes the form

∂2φ

∂x2
− 1

V 2

∂2φ

∂t2
= 0. (51)

The general solutions of this linear equation are f±(x± V t). This would certainly allow
for real solutions, which are not acceptable in quantum theory. The Schrödinger equation
has no second-order time derivatives. It is first-order in time!

Two basic properties of the Schrödinger equation:

• The differential equation is first order in time. This means that for an initial
condition it suffices to know the wave function completely at some initial time
t0 and the Schrödinger equation then determines the wave function for all times.
This can be understood very explicitly. If we know Ψ(x, t0) for all x then the
right-hand side of the Schrödinger equation, which just involves x derivatives and
multiplication, can be evaluated at any point x. This means that at any point x
we know the time-derivative of the wave function (left-hand side of the Schrödinger
equation) and this allows us to calculate the wave function a little time later.

8



• Linearity and superposition. The Schrödinger equation is a linear equation for
complex wave functions. Therefore, given two solutions Ψ1 and Ψ2 , we can form
new solutions as linear combinations αΨ1 +βΨ2 with complex coefficients α and β.

We have written the Schrödinger equation for a particle on a one-dimensional poten-
tial. In order to write now the general Schrödinger equation we need to consider the
Hamiltonian operator:

Ĥ =
p̂2

2m
+ V (r, t). (52)

This time

p̂2 = p̂ · p̂ = (−i}∇) · (−i}∇) = −}2∇2 (53)

where ∇2 is the Laplacian operator

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (54)

The Schrödinger equation finally takes the form

i}
∂

∂t
Ψ(r, t) =

(
− }2

2m
∇2 + V (r, t)

)
Ψ(r, t). (55)

4 Interpreting the wave function

Schrödinger thought that the wave function Ψ represents a particle that could spread
out and disintegrate. The fraction of the particle to be found at x would be proportional
to the magnitude of |Ψ|2. This was problematic, as noted by Max Born (1882-1970).
Born solved the Schrödinger equation for scattering of a particle in a potential, finding
a wave function that fell like 1/r, with r the distance to the scattering center. But
Born also noticed that in the experiment one does not find fractions of particles going
in many directions but rather particles remain whole. Born suggested a probabilistic
interpretation. In his proposal,

The wave function Ψ(x, t) does not tell us how much of the particle is at
position x at time t but rather the probability that upon measurement taken
at time t we would find the particle at position x.

To make this precise we use an infinitesimal volume element with volume dr = dx dy dz
centered around some arbitrary point r. The probability dP to find the particle within
the volume element dr at time t is

dP = |Ψ(r, t)|2 dr. (56)
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Consistency requires that the total probability to find the particle somewhere in the
whole space is unity. Thus the integral of dP over all of space must give one:∫

all space

|Ψ(r, t)|2 dr = 1 (57)

Note: Most of the materials in this lecture note are taken from the lecture on Quantum
Physics by Prof. Barton Zwiebach for the course 8.04 in the year of 2016 at MIT, USA.
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