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1 Hermitian operator

An operator Ω̂, which corresponds to a physical observable Ω, is said to be Hermitian if
(for simplification we shall consider only the one dimensional case which can always be
generalized for three dimension and also assume that the wave functions are normalized
unless mentioned otherwise)∫

Φ∗Ω̂Ψ dx =

∫
(Ω̂Φ)∗Ψ dx. (1)

We sometimes use a briefer notation for the integrals of pairs of functions:

(Φ,Ψ) =

∫
Φ∗(x)Ψ(x) dx. (2)

Note that for any complex constant a

(aΦ,Ψ) = a∗(Φ,Ψ), (Φ, aΨ) = a(Φ,Ψ). (3)

With this notation the condition of Hermiticity is more briefly stated as

(Φ, Ω̂Ψ) = (Ω̂Φ,Ψ). (4)
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The operator Ω̂ is said to be anti-Hermitian is

(Φ, Ω̂Ψ) = −(Ω̂Φ,Ψ). (5)

2 Properties of Hermitian operator

01. The expectation value of a Hermitian operator is real.

The expectation value of Ω is defined as

〈Ω〉Ψ =

∫
Ψ∗(x) Ω̂Ψ(x) dx = (Ψ, Ω̂Ψ). (6)

The complex conjugate of the integral is the integral of the complex conjugate of the
integrand, therefore

(〈Ω〉Ψ)∗ =

∫
(Ψ∗ Ω̂Ψ)∗ dx =

∫
Ψ(Ω̂Ψ)∗ dx =

∫
(Ω̂Ψ)∗Ψ dx. (7)

Note that Ω̂Ψ is a wave function, so it makes sense to take its complex conjugate (we
never have to think of conjugating Ω̂). Using the Hermiticity of the operator, as defined
in (1), we move it into Ψ to get

(〈Ω〉Ψ)∗ =

∫
Ψ∗ Ω̂Ψ dx = 〈Ω〉Ψ, (8)

thus showing that the expectation value is indeed real.

02. The eigenvalues of a Hermitian operator are real.

Assume the operator Ω̂ has an eigenvalue ω1 associated with a normalized eigenfunction
ψ1(x):

Ω̂ψ1(x) = ω1ψ1(x). (9)

Now compute the expectation value of Ω̂ in the state of ψ1:

〈Ω〉ψ1 = (ψ1, Ω̂ψ1) = (ψ1, ω1ψ1) = ω1(ψ1, ψ1) = ω1. (10)

Since, the expectation value is real, the eigenvalue ω1 is also real, as we wanted to show.
Note the interesting fact that the expectation value of Ω̂ on an eigenstate is precisely
given by the corresponding eigenvalue.

Consider now the collection of eigenfunctions and eigenvalues of the Hermitian opera-
tor Ω̂:

Ω̂ψ1(x) = ω1ψ1(x)

Ω̂ψ2(x) = ω2ψ1(x)

Ω̂ψ3(x) = ω3ψ1(x)
...
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The list may be finite or infinite.

03. The eigenfunctions of a Hermitian operator can be organized to satisfy
orthonormality:

(ψi, ψj) =

∫
ψ∗i (x)ψj(x) dx = δij. (11)

For i = j, this is just a matter of normalizing properly each eigenfunction, which can
easily be done. The equation also states that different eigenfunctions are orthogonal, or
have zero overlap. We now explain why this is so for i 6= j with ωi 6= ωj. Indeed, for this

we evaluate (ψi, Ω̂ψj) in two different ways. First

(ψi, Ω̂ψj) = (ψi, ωjψj) = ωj(ψi, ψj), (12)

and second, using Hermiticity of Ω̂, and the reality of eigenvalues

(ψi, Ω̂ψj) = (Ω̂ψi, ψj) = (ωiψi, ψj) = ω∗i (ψi, ψj) = ωi(ψi, ψj). (13)

Equating the final right-hand sides in the two evaluations we get

(ωj − ωi)(ψi, ψj) = 0. (14)

Since the eigenvalues were assumed different, this proves that (ψi, ψj) = 0, as claimed.
This is not yet a full proof of (11) because it is possible to have degeneracies in the
spectrum, namely, different eigenfunctions with the same eigenvalue. In that case the
above argument does not work. One must then show that it is possible to choose linear
combinations of the degenerate eigenfunctions that are mutually orthogonal.

04. The eigenfunctions of Ω̂ form a complete set of basis functions. Any
reasonable Ψ can be written as a superposition of eigenfunctions of Ω̂. This
means that

Ψ(x) = α1ψ1(x) + α2ψ2(x) + · · · =
∑
i

αiψi(x), (15)

with calculable coefficients αi. Indeed, if we know the eigenfunctions we have that αi is
calculated doing the integral of ψ∗i against Ψ:

αi = (ψi, Ψ). (16)

We prove this by doing the integral

(ψi, Ψ) =

∫
ψ∗i (x) Ψ(x)

=

∫
ψ∗i (x)

∑
j

αjψj(x) dx

=
∑
j

αj

∫
ψ∗i (x)ψj(x) dx

=
∑
j

αjδij = αi
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The condition that Ψ(x) is normalized implies a condition on the coefficients αi. We have∫
Ψ∗(x)Ψ(x) dx =

∫ ∑
i

α∗iψ
∗
i (x)

∑
j

αjψj(x) dx

=
∑
i,j

α∗iαj

∫
ψ∗i (x)ψj(x) dx

=
∑
i,j

α∗iαjδij =
∑
i

α∗iαi, (17)

so that the normalization of Ψ implies that∑
i

|αi|2 = 1. (18)

3 Measurement Postulate

This helps us understanding the way in which Hermitian operators represent observables
and learn the rules that they follow.

Postulate: If we measure the Hermitian operator Ω̂ in the state Ψ, the possible outcomes
for the measurement are the eigenvalues ω1, ω2, . . .. The probability pi to measure ωi is
given by

pi = |αi|2, (19)

where Ψ(x) =
∑

i αiψi(x). After the outcome ωi, the state of the system becomes

Ψ(x) = ψi(x). (20)

This is called the collapse of the wave function.

The collapse of the wave function implies that immediately after the measurement that
yielded ωi a repeated measurement of Ω̂ will yield ωi with no uncertainty. A small
subtlety occurs if we have degenerate eigenstates. Suppose the wave function contains a
piece

Ψ = (αiψi + αkψk) + . . . (21)

where ψi and ψk happen to have the same eigenvalue ω and the dots represent other
terms. Then if we measure ω the state after the measurement collapses to the sum of
those two terms

Ψ =
αiψi + αkψk√
|αi|2 + |αk|2

, (22)

with the square root denominator included to provide the proper normalization to Ψ.
As a consistency check note that the probabilities pi to find the various eigenvalues as
outcomes properly add to one: ∑

i

pi =
∑
i

|αi|2 = 1 (23)
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by the normalization condition for Ψ given in (18). The measurement postulate follows
the Copenhagen interpretation of quantum mechanics.

Note that the measurement postulate uses the property that any vector in a vector space
can be written as a sum of different vectors in an infinite number of ways. If we are to
measure Ω̂1 we expand the state in Ω̂1 eigenstates, if we are to measure Ω̂2 we expand
the state in Ω̂2 eigenstates, and so on and so forth. Each decomposition is suitable for
a particular measurement. Each decomposition reveals the various probabilities for the
outcomes of the specific observable.

4 Examples of Hermitian operator

All quantum mechanical operators that correspond to physically observable quantities
are Hermitian operators. We shall see some the examples of that here.

01: Position operator x̂ is a Hermitian operator.

Proof: Since

(Φ, x̂Ψ) =

∫
Φ∗(x)

(
x̂Ψ(x)

)
dx

=

∫
Φ∗(x)

(
xΨ(x)

)
dx

=

∫ (
xΦ∗(x)

)
Ψ(x) dx

=

∫ (
xΦ(x)

)∗
Ψ(x) dx

=

∫ (
x̂Φ(x)

)∗
Ψ(x) dx

= (x̂Φ, Ψ). (24)

From the definition of Hermiticity (4) we conclude that the position operator x̂ is a
Hermitian operator.

02: Momentum operator p̂ is a Hermitian operator.

Proof: We start with (Φ, p̂Ψ) and use p̂ = −i} ∂
∂x

to get

(Φ, p̂Ψ) =

∫
Φ∗(x)

(
p̂Ψ(x)

)
dx

=

∫
Φ∗(x) (−i})

∂Ψ(x)

∂x
dx

= −i}
∫

Φ∗(x)
∂Ψ(x)

∂x
dx.

Integrating by parts we have

(Φ, p̂Ψ) = −i}
[
Φ∗(x)Ψ(x)

]∞
−∞
− (−i})

∫
∂Φ∗(x)

∂x
Ψ(x) dx.
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Since the wave function vanishes as x→ ±∞ the first term in the right-hand side is zero.
Hence

(Φ, p̂Ψ) = i}
∫
∂Φ∗(x)

∂x
Ψ(x) dx

=

∫ (
−i}∂Φ(x)

∂x

)∗
Ψ(x) dx

=

∫ (
p̂Φ(x)

)∗
Ψ(x) dx

= (p̂Φ, Ψ). (25)

Therefore, p̂ is a Hermitian operator.

Exercise: Show that
∂

∂x
is an anti-Hermitian operator while

∂2

∂x2
is a Hermitian opera-

tor.

Note: Most of the materials in this lecture note are taken from the lecture on Quantum
Physics by Prof. Barton Zwiebach for the course 8.04 in the year of 2016 at MIT, USA.
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