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Angular momentum is as important in classical mechanics as in quantum mechanics. It
is particularly useful for studying the dynamics of systems that move under the influence
of spherically symmetric, or central potentials. Angular momentum can be of the orbital
type, this is the familiar case that occurs when a particle rotates around some fixed
point. But is can also be spin angular momentum. This is a different kind of angular
momentum and can be carried by point particles. Much of the mathematics of angular
momentum is valid both for orbital and spin angular momentum.

Let us begin our analysis of angular momentum by recalling that in three dimensions the
usual x̂ and p̂ operators are vector operators:

p̂ = (p̂x, p̂y, p̂z) = −i}
−→
∇ = −i}

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
,

x̂ = (x̂, ŷ, ẑ).

(1)
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The commutation relations are as follows:

[x̂, p̂x] = i}

[ŷ, p̂y] = i}

[ẑ, p̂z] = i}

(2)

All other commutators are involving the three coordinates and the three momenta are
zero!

1 Angular momentum operator

In classical physics the angular momentum of a particle with momentum p and position
r is defined by

L = r× p. (3)

Hence the components of L = (Lx, Ly, Lz) are given by

Lx = ypz − zpy,
Ly = zpx − xpz,
Lz = xpy − ypx.

(4)

The angular momentum operator L̂ = (L̂x, L̂y, L̂z) can be obtained at once by replacing
r and p by the corresponding operators in the position representation:

L̂x = ŷp̂z − ẑp̂y,

L̂y = ẑp̂x − x̂p̂z,

L̂z = x̂p̂y − ŷp̂x.

(5)

In crafting this definition we saw no ordering ambiguities. Each angular momentum
operator is the difference of two terms, each term consisting of a product of a coordinate
and a momentum. But note that in all cases it is a coordinate and a momentum along
different axes, so they commute. Had we written L̂x = p̂zŷ − p̂yẑ, it would have not

mattered, it is the same as the L̂x above. It is simple to check that the angular momentum
are Hermitian.Take L̂x for example. Recalling that for any two operators (ÂB̂)† = B̂†Â†

we have

(L̂x)
† = (ŷp̂z − ẑp̂y)† = (ŷp̂z)

† − (ẑp̂y)
† = (p̂z)

†(ŷ)† − (p̂y)
†(ẑ)†. (6)

Since all coordinates and momenta are Hermitian operators, we have

(L̂x)
† = p̂zŷ − p̂yẑ = ŷp̂z − ẑp̂y = L̂x, (7)

where we moved the momenta to the right of the coordinates by virtue of vanishing
commutators. The other two angular momentum operators are also Hermitian, so we
have

L̂†x = L̂x, L̂†y = L̂y, L̂†z = L̂z. (8)

2



Clearly, angular momentum does not exist in a one-dimensional space. We should men-
tion that the components L̂x, L̂y, L̂z, and the square of L̂,

L̂2 = L̂2
x + L̂2

y + L̂2
z, (9)

all are Hermitian. Hence all the angular momentum operators are observables and have
real eigenvalues.

2 Commutation relations

Given a set of Hermitian operators, it is natural to ask what are their commutators. This
computation enables us to see if we can measure them simultaneously. Let us compute
the commutator of L̂x with L̂y. Since x̂, ŷ, and ẑ mutually commute and so p̂x, p̂y, and
p̂z we have using (2)

[L̂x, L̂y] = [ŷp̂z − ẑp̂y, ẑp̂x − x̂p̂z]
= [ŷp̂z, ẑp̂x]− [ŷp̂z, x̂p̂z]− [ẑp̂y, ẑp̂x] + [ẑp̂y, x̂p̂z]

= [ŷp̂z, ẑp̂x] + [ẑp̂y, x̂p̂z]

= [ŷp̂z, ẑ]p̂x + x̂[ẑp̂y, p̂z]

= ŷ[p̂z, ẑ]p̂x + x̂[ẑ, p̂z]p̂y

= ŷ(−i})p̂x + x̂(i})p̂y

= i}(x̂p̂y − ŷp̂x)
= i}L̂z. (10)

A similar calculation yields the other two commutation relations; but it is much simpler
to infer them from (10) by means of a cyclic permutation of the xyz components, x →
y → z → x:

[L̂x, L̂y] = i}L̂z, [L̂y, L̂z] = i}L̂x, [L̂z, L̂x] = i}L̂y. (11)

This is the full set of commutators of angular momentum operators. The set is referred to
as the algebra of angular momentum. Notice that while the operators L̂ were defined
in terms of coordinates and momenta, the final answer for the commutators do not involve
coordinates nor momenta: commutators of angular momenta give angular momenta! The
L̂ operators are also referred to as orbital angular momentum, to distinguish them from
spin angular momentum operators. The spin angular momentum operators Ŝx, Ŝy, and

Ŝz cannot be written in terms of coordinates and momenta. They are more abstract
entities, in fact their simplest representation is as two-by-two matrices! Still, being
angular momenta they satisfy exactly the same algebra as their orbital cousins. We have

[Ŝx, Ŝy] = i}Ŝz, [Ŝy, Ŝz] = i}Ŝx, [Ŝz, Ŝx] = i}Ŝy. (12)

We have seen that the commutator [x̂, p̂] = i} is associated with the fact that we can-
not have simultaneous eigenstates of position and of momentum. Let us now see what
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the commutators of angular momentum operators tell us. In particular: can we have
simultaneous eigenstates of L̂x and L̂y? As it turns out, the answer is no, we cannot. To
demonstrate this let us assume that there exists a wave function ψ0 which is simultane-
ously an eigenstate of L̂x, L̂y, and L̂z such that

L̂xψ0 = λxψ0,

L̂yψ0 = λyψ0,

L̂zψ0 = λzψ0.

(13)

Letting the first commutator identity of (11) act on ψ0 we have

i}L̂zψ0 = [L̂x, L̂y]ψ0

= L̂xL̂yψ0 − L̂yL̂xψ0

= L̂xλyψ0 − L̂yλxψ0

= (λxλy − λyλx)ψ0

= 0, (14)

showing that λz = 0. But this is not all, looking at the other commutators in the angular
momentum algebra we see that they also vanish acting on ψ0 and as a result λx and λy
must be zero.

All in all, assuming that ψ0 is a simultaneous eigenstate of L̂x, L̂y, and L̂z has led to

L̂xψ0 = L̂yψ0 = L̂zψ0 = 0. The state is annihilated by all angular momentum operators.
This trivial situation is not very interesting. We have learned that it is impossible to find
states that are nontrivial simultaneous eigenstates of any two of the angular momentum
operators.

For commuting Hermitian operators, there is no problem finding simultaneous eigen-
states. In fact, commuting Hermitian operators always have a complete set of simultane-
ous eigenstates. Suppose we select L̂z as one of the operators we want to measure. Can
we now find a second Hermitian operator that commutes with it? The answer is yes.
As it turns out, L̂2, defined in (9) commutes with L̂z and is an interesting choice for a
second operator. Indeed

[L̂z, L̂
2] = [L̂z, L̂xL̂x + L̂yL̂y + L̂zL̂z]

= [L̂z, L̂xL̂x + L̂yL̂y]

= [L̂z, L̂x]L̂x + L̂x[L̂z, L̂x] + [L̂z, L̂y]L̂y + L̂y[L̂z, L̂y]

= i}L̂yL̂x + i}L̂xL̂y − i}L̂xL̂y − i}L̂yL̂x
= 0. (15)

So we should be able to find simultaneous eigenstates of both L̂z and L̂2. The operator
L̂2 is Casimir operator, which means that it commutes with all angular momentum
operators. Just like it commutes with L̂z, it commutes also with L̂x and L̂y.
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3 Angular momentum in spherical coordinates

To understand the angular momentum operators a little better, let us write them in
spherical coordinates. For this we need the relation between (r, θ, φ) and the Cartesian
coordinates (x, y, z):

x = r sin θ cosφ, r =
√
x2 + y2 + z2,

y = r sin θ sinφ, θ = cos−1
(z
r

)
,

z = r cos θ, φ = tan−1
(y
x

)
.

(16)

The angular momentum operators generate rotations. In spherical coordinates rotations
about the z axis are the simplest: they change φ but leave θ invariant. Both rotations
about the x and y axes change θ and φ. We can therefore hope that L̂z is simple in
spherical coordinates. Using the definition L̂z = x̂p̂y − ŷp̂x we have

L̂z = −i}
(
x
∂

∂y
− y ∂

∂x

)
. (17)

Notice that this is related to
∂

∂φ
since, by the chain rule

∂

∂φ
=

∂x

∂φ

∂

∂x
+
∂y

∂φ

∂

∂y
+
∂z

∂φ

∂

∂z

= −y ∂
∂x

+ x
∂

∂y
+ 0

= x
∂

∂y
− y ∂

∂x
, (18)

where we have used (16) to evaluate the partial derivatives. Using the last two equations
we can identify

L̂z = −i} ∂

∂φ
. (19)

This is a very simple and useful representation. It confirms the interpretation that L̂z
generates rotations about the z axis, as it has to do with changes of φ. Note that L̂z is
like a momentum along the “circle” defined by the φ coordinate (φ = φ+ 2π). The other
angular momentum operators are

L̂x = i}
(

sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ

)
,

L̂y = i}
(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
.

(20)

With a longer calculation it can be show that

L̂2 = −}2
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (21)
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4 Eigenvalues of angular momentum

We demonstrated before that the Hermitian operators L̂z and L̂2 commute. We now aim
to constructthe simultaneous eigenfunctions of these operators. They will be functions
of θ and φ and we will call them ψlm(θ, φ). The conditions that they be eigenfunctions
are

L̂z ψlm(θ, φ) = }mψlm(θ, φ), m ∈ R

L̂2 ψlm(θ, φ) = }2 l(l + 1)ψlm(θ, φ), l ∈ R.
(22)

As befits Hermitian operators, the eigenvalues are real. Both m and l are unit free; there
is an } in the L̂z eigenvalue because angular momentum has units of }. For the eigenvalue
of L̂2 we have an }2. Note that we have written the eigenvalue of }2 as l(l + 1) and for
l real this is always greater than orequal to −1/4. In fact l(l + 1) ranges from zero to
infinity as l ranges from zero to infinity. We can show that the eigenvalues of L̂2 can’t
be negative. For this we first claim that

(ψ, L̂2ψ) ≥ 0, (23)

and taking ψ to be a normalized eigenfunction with L̂2 eigenvalue λ we immediately see
that the above gives (ψ, λψ) = λ ≥ 0, as desired. To prove the above equation we simply
expand and use Hermiticiy:

(ψ, L̂2ψ) = (ψ, L̂2
xψ) + (ψ, L̂2

yψ) + (ψ, L̂2
zψ)

= (L̂xψ, L̂xψ) + (L̂yψ, L̂yψ) + (L̂zψ, L̂zψ) ≥ 0, (24)

because each of the three summands is greater than or equal to zero.

Let us now solve the first eigenvalue equation in (22) using the coordinate representation
(16) for L̂z operator:

−i}∂ψlm
∂φ

= }mψlm → ∂ψlm
∂φ

= imψlm. (25)

This determines the φ dependence of the solution and we write

ψlm(θ, φ) = eimφ Pm
l (θ), (26)

where the function Pm
l (θ) captures the still undetermined θ dependence of the eigenfunc-

tion ψlm. We will require that ψlm be uniquely defined as a function of the angles and
this requires that1

ψlm(θ, φ+ 2π) = ψlm(θ, φ). (27)

There is no similar condition for θ. The above condition requires that

eim(φ+2π) = eimφ → ei2πm = 1. (28)

1One may have tried to require that after ψ increases by 2π the wavefunction changes sign, but this
does not lead to a consistent set of ψlm’s.
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This equation implies that m must be an integer:

m ∈ Z (29)

This completes our analysis of the first eigenvalue equation. With a longer calculation it
can be shown that the possible values of l are

l = 0, 1, 2, 3, . . . and − l ≤ m ≤ l. (30)

One can think of the ψlm eigenfunctions as first determined by the integer l and, for a
fixed l, there are 2l + 1 choices of m: −l, −l + 1, . . . , l. Our ψlm eigenfunctions, with
suitable normalization, are called the spherical harmonics Ylm(θ, φ).

5 Eigenfunctions of angular momentum

We demonstrated before that the Hermitian operators L̂z and L̂2 commute. Therefore
there will be a simultaneous eigenfunctions of these operators. They will be functions
of θ and φ and we write them as Ylm(θ, φ), are called the spherical harmonics. The
properly normalized spherical harmonics are

Ylm(θ, φ) = (−1)m

√(
2l + 1

4π

)
(l −m)!

(l +m)!
Pm
l (cos θ) eimφ, (m ≥ 0). (31)

Here Pm
l (cos θ) is the associated Legendre functions. m < 0, we use

Yl,m(θ, φ) = (−1)m[Yl,−m(θ, φ)]∗. (32)

The eigenvalues of L̂z and L̂2 corresponding to the eigenfunction Yl,m(θ, φ) can be known
from the following eigenvalue equations:

L̂zYlm = }mYlm, (m ∈ Z)

L̂2Ylm = }2l(l + 1)Ylm,
(33)

with

l = 0, 1, 2, 3, . . . and − l ≤ m ≤ l. (34)

The first few spherical harmonics are given below.

Being eigenstates of Hermitian operators with different eigenvalues, spherical harmonics
with different l and m subscripts are automatically orthogonal. The complicated normal-
ization factor is needed to make them have unit normalization. The spherical harmonics
form an orthonormal set with respect to integration over the solid angle.∫ 2π

0

dφ

∫ π

0

dθ sin θ Y ∗l′m′(θ, φ)Ylm(θ, φ) = (Y ∗l′m′ , Ylm) = δl′l δm′m. (35)
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6 Central potential

Consider a particle represented by a three-dimensional wave function ψ(x, y, z) moving
in a three dimensional potential V (r). The Schrödinger equation takes the form

− }2

2m
∇2ψ(r) + V (r)ψ(r) = Eψ(r). (36)

We have a central potential if V (r) = V (r). A central potential has no angular
dependence, the value of the potential depends only on the distance r from the origin. A
central potential is spherically symmetric; the surfaces of constant potential are spheres
centered at the origin and it is therefore rotationally invariant. The equation above for
a central potential is

− }2

2m
∇2ψ(r) + V (r)ψ(r) = Eψ(r). (37)

Note that the wavefunction is a full function of r, it will only be rotational invariant
for the simplest kinds of solutions. Given the rotational symmetry of the potential we
are led to express the Schrödinger equation and energy eigenfunctions using spherical
coordinates.

In spherical coordinates, the Laplacian is

∇2ψ = (∇ · ∇)ψ =

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

]
ψ. (38)

Therefor the Schrödinger equation for a particle in a central potential becomes

− }2

2m

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2

{
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

}]
ψ + V (r)ψ(r) = Eψ(r).

The angular dependent piece of the ∇2 operator is the magnitude squared of the angular
momentum operator. Hence the Schrödinger equation becomes

− }2

2m

[
1

r2
∂

∂r

(
r2
∂

∂r

)
− 1

r2
L̂2

}2

]
ψ(r) + V (r)ψ(r) = Eψ(r). (39)
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or

− }2

2m

1

r2
∂

∂r

(
r2
∂

∂r

)
ψ(r) +

L̂2

2mr2
ψ(r) + V (r)ψ(r) = Eψ(r). (40)

The wave function will have two parts: one will be the radial part and is dependent only
on r and the other part is the angle dependent part. The angle dependent is known as
the spherical harmonics, Ylm(θ, φ).

Note: Most of the materials in this lecture note are taken from the lecture on Quantum
Physics by Prof. Barton Zwiebach for the course 8.04 in the year of 2016 at MIT, USA.
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