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A hydrogen atom or a hydrogen like atom (He+, Li2+, Be+3, etc.) consists of an atomic
nucleus of charge Ze and an electron of charge −e. Their mutual interaction is given by
the Coulomb potential

V (|r1 − r2|) = − 1

4πε0

Ze2

|r1 − r2|
, (1)

where r1 = r1(x1, y1, z1) and r2 = r2(x2, y2, z2) are the electron and nucleus position
vectors, respectively. The time-independent Schrödinger equation for the system is given
by {

− }2

2m1

∇2
1 −

}2

2m2

∇2
2 + V (|r1 − r2|)

}
Ψ(r1, r2) = EtotΨ(r1, r2), (2)

where m1 and m2 are the masses of electron and nucleus, respectively and the Laplacians
are given in cartesian coordinate as

∇2
i =

∂2

∂x2i
+

∂2

∂y2i
+

∂2

∂z2i
; i = 1, 2. (3)
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1 Separation of the Center of Mass Motion

Since V depends only on the relative distance between the electron and nucleus, instead
of the position vectors of the electron and nucleus, it is more appropriate to use the
coordinates of the center of mass, R = R(X, Y, Z), and the relative coordinates of the
electron with respect to the nucleus, r = r(x, y, z). The transformation from coordinates
(r1 , r2) to coordinates (R, r) is given by introducing the relative coordinate

r = r1 − r2 (4)

and the vector

R =
m1r1 +m2r2
m1 +m2

(5)

which determines the position of the centre of mass system. We write Ψ(r1, r2) = Ψ(R, r)
to show

∂Ψ

∂x1
=
∂X

∂x1
· ∂Ψ

∂X
+

∂x

∂x1
· ∂Ψ

∂x
=

µ

m2

∂Ψ

∂X
+
∂Ψ

∂x
. (6)

In three dimension

∇1 =
µ

m2

∇R +∇ (7)

where µ is the reduced mass defined as

1

µ
=

1

m1

+
1

m2

=
m1 +m2

m1m2

. (8)

Similarly ∇2 can be written as

∇2 =
µ

m1

∇R −∇. (9)

Changing variables from the coordinates (r1, r2) to the new coordinates (R, r), we find

}2

2m1

∇2
1 +

}2

2m2

∇2
2 =

}2

2m1

(
µ

m2

∇R +∇
)2

+
}2

2m2

(
µ

m1

∇R −∇
)2

=
}2

2M
∇2
R +

}2

2µ
∇2 (10)

where M = m1 + m2 is the total mass of the system. The Schrödinger equation (2)
therefore becomes{

− }2

2M
∇2
R −

}2

2µ
∇2 + V (r)

}
Ψ(R, r) = EtotΨ(R, r). (11)

At this moment we pause for a while and examine our variables in a bit details. We
started with r1 and r2, the electron and nucleus positions vectors respectively. If we
denote the momenta vectors of electro and nucleus by p1 and p2 respectively, then we
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have two pairs of canonical variables, meaning they satisfy the canonical commutation
relations:

[(r̂1)i, (p̂1)j] = i}δij,

[(r̂2)i, (p̂2)j] = i}δij.
(12)

Here the subscripts i, j = 1, 2, 3 denote the various components of the vector operators.
Furthermore, the proton variables commute with the electron variables. We have two
pairs of independent canonical variables.

After center of mass (CM) motion separation we arrived at the Schrödinger equation
(11) where the new position vectors are r and R, the relative and CM position vectors
respectively. To find the corresponding momenta vectors we make use of the equations
(7) and (9) along with the definition of momentum operator in three dimension

p̂ = −i}∇ (13)

to have

p̂1 =
µ

m2

P̂ + p̂, (14)

and

p̂2 =
µ

m1

P̂− p̂. (15)

Solving equations (14) and (15) and dropping the operator symbol we have the momenta
vectors which correspond to the coordinates (4) and (5) respectively,

p = µ

(
p1

m1

− p2

m2

)
=
m2

M
p1 −

m1

M
p2,

P = p1 + p2.

(16)

Here p is the relative momentum and P is the total momentum of the system. Note that
p can also be written in terms of relative velocities as p = µ(v1 − v2), where v1 and v2

are the velocities of electron and proton.

These new sets of variables (position and momentum) are also canonical that is they
satisfy the following commutation relations.

[r̂i, p̂j] = i}δij,[
R̂i, P̂j

]
= i}δij.

(17)

The relative coordinates variables also commute with the CM coordinates. Therefore,
we again have two pairs of independent canonical variables.

Since R and r are independent to each other the wave function Ψ(R, r) can be separated
into a product of functions of the centre of mass coordinate R and of relative coordinate
r as Ψ(R, r) = Φ(R)ψ(r). With this the Schrödinger equation (11) can be written as{

− }2

2M
∇2
R −

}2

2µ
∇2 + V (r)

}
Φ(R)ψ(r) = EtotΦ(R)ψ(r)
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or

− }2

2M
ψ(r)∇2

R Φ(R) + Φ(R)

{
− }2

2µ
∇2 + V (r)

}
ψ(r) = EtotΦ(R)ψ(r)

or

− }2

2M

1

Φ(R)
∇2
R Φ(R) +

1

ψ(r)

{
− }2

2µ
∇2 + V (r)

}
ψ(r) = Etot. (18)

Thus, we have the following two separate equations

− }2

2M
∇2
R Φ(R) = ECMΦ(R) (19)

and {
− }2

2µ
∇2 + V (r)

}
ψ(r) = Eψ(r) (20)

with the condition Etot = ECM + E.

Thus, we have reduced the Schrödinger equation (11), which involves two variables R
and r , into two separate equations (19) and (20) each involving a single variable. Note
that equation (19) shows that the center of mass moves like a free particle of mass M.
The solution to this kind of equation has the form

Φ(R) = (2π)−3/2 eik·R (21)

where k is the wave vector associated with the center of mass. The constant ECM =
}2k2/(2M) gives the kinetic energy of the center of mass in the laboratory system (the
total mass M is located at the origin of the center of mass coordinate system).

The second equation (20) represents the Schrödinger equation of a fictitious particle of
mass µ moving in the central potential

V (r) = − 1

4πε0

Ze2

r
. (22)

We should note that the total wave function Ψ(R, r) is seldom used. When the hydrogen
like problem is mentioned, this implicitly refers to ψ(r) and E. That is, the hydrogenic
wave function and energy are taken to be given by ψ(r) and E, not by Ψ(R, r) and
Etot This is because nucleus is much massive then electron and compare to the motion of
electron nucleus remain stationary. Since we are only interested to the motion of electron
the Schrödinger equation of the hydrogen like atom is given by (20).
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2 Separation of the Schrödinger Equation in Spher-

ical Polar Coordinates

The Schrödinger equation (20) for the relative motion has the form of an equation for a
central potential with Hamiltonian

H = − }2

2µ
∇2 + V (r)

= − }2

2µ

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

]
+ V (r)

= − }2

2µ

[
1

r2
∂

∂r

(
r2
∂

∂r

)
− L2

}2r2

]
+ V (r), (23)

where L2 is the square of the magnitude of the orbital angular momentum and defined
as

L2 = −}2
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (24)

The corresponding time-independent Schrödinger equation is{
− }2

2µ

[
1

r2
∂

∂r

(
r2
∂

∂r

)
− L2

}2r2

]
+ V (r)

}
ψ(r) = Eψ(r)

or {
− }2

2µ

1

r2
∂

∂r

(
r2
∂

∂r

)
+

L2

2µr2
+ V (r)

}
ψ(r) = Eψ(r). (25)

In order to simplify the solution of this equation we notice that L2 do not operate on the
radial variable r. Since the spherical harmonics Ylm(θ, φ) are eigenfunctions of L2 we can
look for solution of the Schrödinger equation (25) having the separable form

ψ(r) = ψ(r, θ, ψ) = Rl(r)Ylm(θ, φ) (26)

where Rl(r) is the radial function which remains to be found. It is worth stressing
that the angular dependence of the eigenfunction (26) is entirely given by the spherical
harmonics Ylm(θ, φ) characterised by the orbital angular momentum quantum number l
and magnetic quantum number m.

3 Solution of the Radial Equation

Inserting (26) into the Schrödinger equation (25) and using the fact that L2Ylm(θ, φ) =
}2l(l + 1)Ylm(θ, φ), we obtain for the radial function the differential equation{

− }2

2µ

1

r2
∂

∂r

(
r2
∂

∂r

)
+

}2l(l + 1)

2µr2
+ V (r)

}
Rl(r) = ERl(r). (27)
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Note that the magnetic quantum number m does not appear in this equation. There-
fore the radial function is independent of this quantum number. In the domain of the
variable r, the angular momentum contribution }2l(l+ 1)/(2µr2) acts as an effective ad-
dition to the potential energy. It can be identified with centrifugal force, which pulls the
electron outward, in opposition to the Coulomb attraction. Carrying out the successive
differentiations in (27) and simplifying, we obtain{

− }2

2µ

(
d2

dr2
+

2

r

d

dr

)
+

}2l(l + 1)

2µr2
− Ze2

4πε0r

}
Rl(r) = ERl(r)

or

− }2

2µ

(
d2Rl(r)

dr2
+

2

r

dRl(r)

dr

)
+

[
}2l(l + 1)

2µr2
− Ze2

4πε0r
− E

]
Rl(r) = 0

or

d2Rl(r)

dr2
+

2

r

dRl(r)

dr
+

[
2µ

}2
E − l(l + 1)

r2
+

2µ

}2

(
Ze2

4πε0

)
1

r

]
Rl(r) = 0 (28)

another second-order linear differential equation with non-constant coefficients.

3.1 Asymptotic solution of the radial wave function

First we explore the asymptotic solutions to (28), as r →∞. In the asymptotic approx-
imation,

d2Rl(r)

dr2
≈ −2µE

}2
Rl(r) =

2µ|E|
}2

Rl(r) (29)

having noted that the energy E is negative for bound states. Solutions to (29) are

Rl(r) = Ae−
√

2µ|E|/}2 r +Be
√

2µ|E|/}2 r, (30)

where A and B are constants to be determined. We reject the positive exponential on
physical grounds, since Rl(r) → ∞ as r → ∞, in violation of the requirement that the
wave function must be finite everywhere. Choosing the negative exponential (B = 0)
and setting

E = −µZ
2e4

8ε20h
2

= − µZ2e4

2(4πε0)2}2
, (31)

the ground state energy in the Bohr theory (in center of mass system), we obtain

Rl(r) = Ae−Zr/aµ (32)

where aµ is the modified Bohr radius

aµ =
(4πε0)}2

µe2
=

εh2

πµe2
=
m1

µ

εh2

πm1e2
=
m1

µ
a0 (33)
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with a0 being the Bohr radius.

It turns out, very fortunately, that this asymptotic approximation is also an exact solution
of the Schrödinger equation (28) with l = 0. The solutions to (28), designated Rnl(r), are
labelled by n, known as the principal quantum number, as well as by the orbital angular
momentum l, which is a parameter in the radial equation. The solution (32) corresponds
to R10(r). This should be normalized according to the condition∫ ∞

0

[R10(r)]
2r2dr = 1. (34)

Using the definite integral
∫∞
0
rne−αrdr = n!α−(n+1), we get the normalized radial func-

tion

R10(r) = 2

(
Z

aµ

)3/2

e−Zr/aµ . (35)

Since this function is nodeless, we identify it with the ground state of the hydrogen like
atom. Multiplying (35) by the spherical harmonic Y00(θ, φ) = 1/

√
4π, we obtain the total

wave function

ψ100(r, θ, φ) = ψ100(r) = ψ1s(r) =
1√
π

(
Z

aµ

)3/2

e−Zr/aµ . (36)

The wave function of the hydrogen atom in ground state is found from (36) by setting
Z = 1 as

ψ1s(r) =

(
1

π1/3aµ

)3/2

e−r/aµ . (37)

3.2 General solution of the radial wave function

The normalized radial function for the bound state of hydrogenic atom has a rather
complicated form which we give without proof:

Rnl(r) = −

{(
2Z

naµ

)3
(n− l − 1)!

2n[(n+ 1)!]3

}1/2

e−ρ/2ρlL2l+1
n+l (ρ) (38)

with

ρ =
2Z

naµ
r, aµ =

(4πε0)}2

µe2
.
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Here Lαβ is an associated Laguerre polynomial. The first few radial eigenfunctions (38)
are given by

R10(r) = 2

(
Z

aµ

)3/2

e−Zr/aµ (39)

R20(r) = 2

(
Z

2aµ

)3/2(
1− Zr

2aµ

)
e−Zr/2aµ (40)

R21(r) =
1√
3

(
Z

2aµ

)3/2(
Zr

aµ

)
e−Zr/2aµ (41)

R30(r) = 2

(
Z

3aµ

)3/2(
1− 2Zr

3aµ
+

2Z2r2

27a2µ

)
e−Zr/3aµ (42)

R31(r) =
4
√

2

9

(
Z

3aµ

)3/2(
1− Zr

6aµ

)(
Zr

aµ

)
e−Zr/3aµ (43)

R32(r) =
4

27
√

10

(
Z

3aµ

)3/2(
Zr

aµ

)2

e−Zr/3aµ (44)

and are illustrated in Fig. 1.

4 The Hydrogenic Wave Function

The solutions of the hydrogenic Schrödinger equation in spherical polar coordinates can
now be written in full

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) (45)

where n = 1, 2, 3, . . . is the principle quantum number, l = 0, 1, 2, . . . , n− 1 is the orbital
angular momentum quantum number and m = 0,±1,±2 . . .± l is the magnetic quantum
number.
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Figure 1: The first few radial functions Rnl(r) for hydrogen. The radial length is in units of
the Bohr radius a0. Notice that Rnl(r) has (n− l − 1) nodes. [2]
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