#### Dr Mohammad Abdur Rashid



Jashore University of Science and Technology

The configuration or state of a quantum object is completely specified by the wave function.

The wave function of a particle, at a particular time, contains all the information that anybody at that time can have about the particle (e.g. position, momentum, and energy).

The wave function, in general, is not a real quantity, but a complex-valued functions of space and time.



In one dimension the wave function is denoted by  $\Psi(x,t)$ , while in three dimension it is  $\Psi(x, y, z, t)$ .

#### How do we get the wave function?

The wave function is derived by solving Schrödinger equation.



The Schrödinger equation of the particle moving in the potential V(x) is written as

$$-\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x)}{\partial x^2} + V(x)\Psi(x) = E\Psi(x)$$



Jashore University of Science and Technology

The wave function itself has no physical interpretation. It is not measurable.

The square of the absolute value of the wave function has a physical interpretation.

In one dimension, we interpret  $|\Psi(x, t)|^2$  as a probability density, a probability per unit length of finding the particle at a time *t* at position *x*.



Since the wave function, in general, is a complex function we write

$$|\Psi(x,t)|^2 = \Psi^*(x,t)\Psi(x,t)$$

$$|\Psi(x,t)|^2 dx = \begin{cases} \text{ probability of finding the particle} \\ \text{between } x \text{ and } (x+dx), \text{ at time } t \end{cases}$$



A (fictitious) schematic diagram showing  $|\Psi(x)|^2$  against distance from nucleus, in arbitrary unit.



There is a 100% probability that the electron is somewhere - in other words a probability of 1.



The normalization condition of the wave function

$$\int_{-\infty}^{+\infty} |\Psi(x,t)|^2 \mathrm{d}x = 1$$

The wave function must be single valued and continuous.



Single-valued wave function: 
$$\Psi(x) = x^2$$

## Multi-valued wave function: $\Psi(x) = \pm \sqrt{x}$



Jashore University of Science and Technology



This is an acceptable wave function. It is single valued and continuous.





This is an unacceptable wave function.  $\Psi(x, 0)$  does not have a unique single value at x = 0. The wave function is not continuous.

![](_page_10_Picture_3.jpeg)

- 1. In order to avoid infinite probabilities,  $\Psi$  must be finite everywhere.
- 2. In order to avoid multiple values of the probability,  $\Psi$  must be single valued.
- **3.** For finite potentials,  $\Psi$  and  $\partial \Psi / \partial x$  must be continuous. This is required because the second-order derivative term in the wave equation must be single valued. (There are exceptions to this rule when *V* is infinite.)
- **4.** In order to normalize the wave functions,  $\Psi$  must approach zero as *x* approaches  $\pm \infty$ .

Solutions for  $\Psi$  that do not satisfy these properties do not generally correspond to physically realizable circumstances.

![](_page_11_Picture_6.jpeg)

## Thank You

#### You may subscribe to our channel and let us know your comments.

![](_page_12_Picture_2.jpeg)

Jashore University of Science and Technology