Schrödinger Equation Operator in QM

Dr Mohammad Abdur Rashid

Jashore University of Science and Technology **Dr Rashid, 2020**

de Broglie wave for a particle

The wave function or de Broglie wave for a free particle with momentum p and energy E is given by

$$
\Psi(x,t)=e^{i(px-Et)/\hbar}
$$

Since the wave function contains all the information about the system, it is often of interest to find appropriate operators to extract information from the wave function.

Momentum operator \hat{p} \overline{a}

We take

$$
\begin{array}{rcl}\n\frac{\hbar}{i} \frac{\partial}{\partial x} \Psi(x, t) & = & \frac{\hbar}{i} \frac{\partial}{\partial x} e^{i(px - Et)/\hbar} \\
& = & \frac{\hbar}{i} \frac{ip}{\hbar} e^{i(px - Et)/\hbar} \\
& = & p \Psi(x, t)\n\end{array}
$$

where the p factor is just the momentum.

Momentum operator \hat{p} \overline{a}

We thus identify the **momentum operator** \hat{p} as

$$
\hat{p} \equiv \frac{\hbar}{i} \frac{\partial}{\partial x} = -i\hbar \frac{\partial}{\partial x}
$$

and we have verified that acting on the wave function $\Psi(x,t)$ for a particle of momentum p it gives p times the wave function:

$$
\hat{p}\Psi(x,t) = -i\hbar \frac{\partial}{\partial x}\Psi(x,t) = p\Psi(x,t).
$$

The momentum operator acts on wave functions, which are functions of space and time to give another function of space and time. Since \hat{p} acting on $\Psi(x,t)$ gives a number $(p, \text{ in fact})$ times $\Psi(x,t)$ we say that $\Psi(x,t)$ is an **eigenstate** of \hat{p} . We also say that $\Psi(x,t)$ is a state of **definite momentum**.

Let us now consider extracting the energy information from the free particle wave function. This time we must avail ourselves of the time derivative:

$$
i\hbar \frac{\partial}{\partial t} \Psi(x,t) = i\hbar \frac{\partial}{\partial t} e^{i(px - Et)/\hbar}
$$

= $i\hbar \frac{-iE}{\hbar} e^{i(px - Et)/\hbar}$
= $E \Psi(x,t)$.

Hence we define the total energy operator \hat{E} such that

$$
\hat{E}=i\hbar\frac{\partial}{\partial t}.
$$

$$
\hat{E}\Psi(x,t) = i\hbar \frac{\partial}{\partial t} \Psi(x,t) = E\Psi(x,t)
$$

Eigenvalue Equation

$$
\hat{p}\Psi(x,t) = p\Psi(x,t), \qquad \hat{E}\Psi(x,t) = E\Psi(x,t)
$$

 $(Operator)(function) = (constant factor) \times (same function)$

 $(Operator)$ (eigenfunction) = (eigenvalue) \times (eigenfunction)

Eigenvalue equation:
$$
\hat{\Omega}\Psi = \omega\Psi
$$

Example: Show that e^{ax} is an eigenfunction of the operator d/dx , and find the corresponding eigenvalue. Show that e^{ax^2} is not an eigenfunction of d/dx .

We need to operate on the function with the operator and check whether the result is a constant factor times the original function.

Eigenvalue Equation

For
$$
\hat{\Omega} = \frac{d}{dx}
$$
 and $\Psi = e^{ax}$:

$$
\hat{\Omega}\Psi = \frac{\mathrm{d}}{\mathrm{d}x}e^{ax} = ae^{ax} = a\Psi
$$

Therefore e^{ax} is indeed an eigenfunction of $\frac{d}{dx}$, and its eigenvalue is a .

Eigenvalue Equation

For
$$
\hat{\Omega} = \frac{d}{dx}
$$
 and $\Psi = e^{ax^2}$:

$$
\hat{\Omega}\Psi = \frac{\mathrm{d}}{\mathrm{d}x}e^{ax^2} = 2axe^{ax} = 2ax\Psi
$$

which is not an eigenvalue equation of $\hat{\Omega}$. Even though the same function Ψ occurs on the right-hand side.

Energy operator
$$
\hat{E}
$$

$$
\hat{p} \equiv \frac{\hbar}{i} \frac{\partial}{\partial x} = -i\hbar \frac{\partial}{\partial x}
$$

For a free particle the total energy is the kinetic energy and is given in terms of momentum such that

$$
E = \frac{p^2}{2m}.
$$

We write

Since p is a constant we can move the p factor on the last right-hand side close to the wave function and then replace it by the momentum operator.

$$
E\Psi = \frac{1}{2m} (-i\hbar) \frac{\partial}{\partial x} p\Psi
$$

= $\frac{1}{2m} (-i\hbar) \frac{\partial}{\partial x} (-i\hbar) \frac{\partial}{\partial x} \Psi$
= $-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2}$.

$$
\hat{E} = \frac{\hat{p}^2}{2m} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}.
$$

 \hat{E}

For the free particle wave function $\Psi(x,t) = e^{i(px - Et)/\hbar}$ we show that

$$
\Psi(x,t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} e^{i(px - Et)/\hbar}
$$

=
$$
-\frac{\hbar^2}{2m} \left(\frac{ip}{\hbar}\right)^2 e^{i(px - Et)/\hbar}
$$

=
$$
\frac{p2}{2m} \Psi(x,t)
$$

=
$$
E\Psi(x,t)
$$

Free particle Schrödinger equation

$$
i\hbar\frac{\partial}{\partial t}\Psi = E\Psi = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi
$$

For a free particle the de Broglie wave function satisfies the differential equation:

$$
i\hbar\frac{\partial}{\partial t}\Psi(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi(x,t)
$$

$$
\Psi = e^{i(px-Et)/\hslash}
$$

$$
\hat{E} \equiv \frac{\hat{p}^2}{2m} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}
$$

Kinetic energy operator

Using the energy operator the free-particle Schrödinger equation can be written as:

$$
i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \hat{E} \Psi(x,t).
$$

The kinetic energy operator:

$$
\hat{T} \equiv -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}
$$

Hamiltonian operator

If the particle is not free but rather is moving in some external potential $V(x,t)$, the total energy of the particle is the sum of kinetic and potential energies:

$$
E = \frac{p^2}{2m} + V(x, t).
$$

This suggests that the total energy operator should be:

$$
\hat{E} = \frac{\hat{p}^2}{2m} + V(x, t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x, t).
$$

Hamiltonian operator

In case of a particle in a potential $V(x, t)$ the Schrödinger equation is written as

$$
i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x,t)\right) \Psi(x,t).
$$

The energy operator E is usually called the Hamiltonian operator H , so one has

$$
\hat{H} \equiv -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x, t).
$$

The Schrödinger equation

$$
i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \hat{H} \Psi(x,t)
$$

For a particle quantum mechanical of mass m moving in a potential $V(x,t)$ the Hamiltonian operator is

$$
\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x, t)
$$

Position operator

We introduce another very important operator: the **position operator** \hat{x} that acting on functions of x gives another function of x as follows:

$$
\hat{x}f(x) \equiv xf(x).
$$

$$
\hat{x}^k f(x) \equiv x^k f(x)
$$

Schrödinger equation and wave function

$$
i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \hat{H} \Psi(x,t)
$$

The Schrödinger equation has an explicit i on the lefthand side. This i shows that it is impossible to find a solution for real Ψ . If Ψ were real the right-hand side of the equation would be real but the left-hand side would be imaginary. Thus, the Schrödinger equation forces us to work with complex wave functions.

The Schrödinger equation in 3D

$$
i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \left(-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}, t)\right) \Psi(\mathbf{r}, t)
$$

The Laplacian operator: $\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$.

Operators in 3D

 $\hat{H} \equiv -\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r},t)$ $\hat{\mathbf{r}} \equiv (\hat{x}, \hat{y}, \hat{z})$

Thank You

To receive notification of new video please subscribe to our channel.

You may also let us know your comments.

Jashore University of Science and Technology **Dr Rashid, 2020**