Normalization of Wave Function

Dr Mohammad Abdur Rashid

Jashore University of Science and Technology

One dimensional time-independent Schrödinger Equation

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) + V(x)\psi(x) = E\psi(x)$$

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} = E\psi(x)$$

$$\psi_n(x) = A \sin\left(\frac{n\pi x}{L}\right)$$

$$E_n = n^2 \frac{\pi^2 \hbar^2}{2mL^2}$$

$$(n = 1, 2, 3, 4, \ldots)$$

To find the value of A we normalize the wave function over the total distance $-\infty < x < \infty$.

$$\int_{-\infty}^{\infty} \psi_n^*(x)\psi_n(x)\mathrm{d}x = 1$$

Substitution of the wave function yields

$$A^2 \int_0^L \sin^2\left(\frac{n\pi x}{L}\right) \mathrm{d}x = 1$$

Jashore University of Science and Technology

$$\int \sin^2 \left(\frac{n\pi x}{L}\right) dx = \frac{1}{2} \int 2\sin^2 \left(\frac{n\pi x}{L}\right) dx$$
$$= \frac{1}{2} \int \left[1 - \cos\left(2\frac{n\pi x}{L}\right)\right] dx$$
$$= \frac{1}{2} \left[\int dx - \int \cos\left(\frac{2n\pi x}{L}\right) dx\right]$$
$$= \frac{1}{2} \left[x - \frac{L}{2n\pi} \int \cos\left(\frac{2n\pi x}{L}\right) d\left(\frac{2n\pi x}{L}\right)\right]$$
$$= \frac{1}{2} \left[x - \frac{L}{2n\pi} \times \sin\left(\frac{2n\pi x}{L}\right)\right]$$

Jashore University of Science and Technology

$$\int_{0}^{L} \sin^{2}\left(\frac{n\pi x}{L}\right) dx = \frac{1}{2} \left[x - \frac{L}{2n\pi} \times \sin\left(\frac{2n\pi x}{L}\right) \right]_{0}^{L}$$
$$= \frac{L}{2}$$

$$A^{2} \int_{0}^{L} \sin^{2} \left(\frac{n\pi x}{L}\right) dx = A^{2} \frac{L}{2}$$
$$A = \sqrt{\frac{2}{L}}$$

Jashore University of Science and Technology

Normalized Wave Function

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

$$(n = 1, 2, 3, 4, \ldots)$$

Jashore University of Science and Technology

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

$$E_n = n^2 \frac{\pi^2 \hbar^2}{2mL^2}$$

$$n=1,2,3,4,\ldots)$$

Y

Postulate 4. For a system in a state described by a normalized wave function Ψ , the average or expectation value of the observable corresponding to A is given by

$$\langle A \rangle = \int \Psi^* \hat{A} \Psi d\tau$$

QM05: Postulates of Quantum Mechanics [বাংলা]

https://youtu.be/DZ8LFkJkGKo

The Expectation Value of Position

$$\begin{aligned} \langle x \rangle &= \int_{-\infty}^{\infty} x |\psi|^2 \, dx = \frac{2}{L} \int_{0}^{L} x \sin^2 \frac{n\pi x}{L} \, dx \\ &= \frac{2}{L} \bigg[\frac{x^2}{4} - \frac{x \sin(2n\pi x/L)}{4n\pi/L} - \frac{\cos(2n\pi x/L)}{8(n\pi/L)^2} \bigg]_{0}^{L} \\ &= \frac{2}{L} \bigg(\frac{L^2}{4} \bigg) = \frac{L}{2} \end{aligned}$$

$$\langle p \rangle = \int_{-\infty}^{\infty} \psi^* \hat{p} \psi \, dx = \int_{-\infty}^{\infty} \psi^* \left(\frac{\hbar}{i} \frac{d}{dx}\right) \psi \, dx$$

$$= \frac{\hbar}{i} \frac{2}{L} \frac{n\pi}{L} \int_0^L \sin \frac{n\pi x}{L} \cos \frac{n\pi x}{L} dx$$

$$=\frac{\hbar}{iL}\left[\sin^2\frac{n\pi x}{L}\right]_0^L=0$$

Jashore University of Science and Technology

$$E = p^2/2m$$
 $p_n = \pm \sqrt{2mE_n} = \pm \frac{n\pi\hbar}{L}$

$$p_{\rm av} = \frac{(+n\pi\hbar/L) + (-n\pi\hbar/L)}{2} = 0$$

Jashore University of Science and Technology

$$\hat{p}\psi_n = p_n\psi_n$$

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{1}{2i}e^{i\theta} - \frac{1}{2i}e^{-i\theta}$$

Jashore University of Science and Technology

$$\hat{p}\psi_n^+ = p_n^+\psi_n^+ \qquad p_n^+ = +\frac{n\pi\hbar}{L}$$

Similarly the wave function ψ_n^- leads to

$$p_n^- = -\frac{n\pi\hbar}{L}$$

Jashore University of Science and Technology

Determine the expectation values for x, x^2 , p, and p^2 of a particle in an infinite square well for the first excited state.

The first excited state corresponds to n = 2.

$$\psi_2(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{2\pi x}{L}\right)$$

Jashore University of Science and Technology

Thank You

To receive notification of new video please subscribe to our channel.

You may also let us know your comments.

Jashore University of Science and Technology