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Wave function and Schrodinger equation

The wave function W(x,t) that describes the quantum
mechanics of a particle of mass m moving in a potential
V(x,t) satisfies the Schrodinger equation
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Interpretation of wave function

The Interpretation of the wave function arises by defining
probability density
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Properties of wave function

If a wave function has well-defined non-zero limits as
r — Fo00 , the integral around infinity would produce
an infinite result.
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Normalizing the wave function

/ |\If(a;‘, t) |2d:€ - N 7é 1 Normalizable wave function

©.@)

U'(x,t) =

(:1;j t) Normalized wave function

1
v
VN

) |\Ij’(xam2d$ = J%/' /OO ‘\Ij(wat)‘Qdaz — j%f x N =1




Time evolution of wave function

Suppose we have a normalized wave function at an
initial time t = ¢y
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Will it remain normalized as time goes on and W
evolves?




Time evolution of wave function

Since ¥(x, ty) and the Schrodinger equation determine
U for all times. Do we have for a later time ¢,
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Time evolution of wave function
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We have: N (tg) = 1 dN (1)
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Conservation of probability
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Note that NV (¢) is a function only of ¢, so we used a total
derivative but p(z,t) is a function of z as well as ¢, so a
partial derivative is used.




The Schrodinger equation
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Time evolution of probability density
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Time evolution of probability density
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Conservation of probability
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Probability current
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Time evolution of wave function
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Hence N is constant (independent of time) and if W
1s normalized at time ¢ = ¢y, it remains normalized
for all future time.
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