Simple Harmonic Oscillator

Exited States | Orthonormality of states

Dr Mohammad Abdur Rashid

The Hamiltonian of SHO

The total energy
$$E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{p^2}{2m} + \frac{1}{2}m\omega^2x^2$$

Here $\omega = \sqrt{k/m}$ is angular frequency of the oscillation.

The Hamiltonian
$$\hat{H}=\frac{\hat{p}^2}{2m}+\frac{1}{2}m\omega^2\hat{x}^2.$$

$$V(\hat{x})=\frac{1}{2}m\omega^2\hat{x}^2.$$

$$V(\hat{x}) = \frac{1}{2}m\omega^2 \hat{x}^2$$

Factorized Hamiltonian of SHO

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right) = \hbar\omega \left(\hat{N} + \frac{1}{2}\right)$$

$$\hat{N} \equiv \hat{a}^{\dagger} \hat{a}$$

Number operator

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i\hat{p}}{m\omega} \right)$$

$$\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i\hat{p}}{m\omega} \right)$$

The ground state wave function and energy

$$\hat{a}\psi_0=0$$

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}} x^2$$

$$\left(\hat{x} + \frac{\hbar}{m\omega} \frac{\mathrm{d}}{\mathrm{d}x}\right) \psi_0(x) = 0$$

$$E_0 = \frac{1}{2}\hbar\omega$$

Operator manipulation

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right)$$

$$\hat{N} \equiv \hat{a}^{\dagger} \hat{a}$$

$$\hat{a}\psi_0 = 0$$

$$\hat{N}\psi_0 = \hat{a}^{\dagger}\hat{a}\psi_0 = 0$$

Thus ψ_0 is an eigenstate of the operator N with an eigenvalue N=0. Therefore ψ_0 is an energy eigenstate with energy E_0 given by

$$E_0 = \hbar\omega \left(0 + \frac{1}{2}\right) = \frac{1}{2}\hbar\omega$$

Operator manipulation

$$[\hat{N}, \hat{a}] = [\hat{a}^{\dagger}\hat{a}, \hat{a}] = \hat{a}^{\dagger}[\hat{a}, \hat{a}] + [\hat{a}^{\dagger}, \hat{a}]\hat{a} = -\hat{a}$$

$$[\hat{N}, \hat{a}^{\dagger}] = [\hat{a}^{\dagger}\hat{a}, \hat{a}^{\dagger}] = \hat{a}^{\dagger}[\hat{a}, \hat{a}^{\dagger}] + [\hat{a}^{\dagger}, \hat{a}^{\dagger}]\hat{a} = \hat{a}^{\dagger}$$

Similarly we can show

$$[\hat{N}, \hat{a}^2] = [\hat{N}, \hat{a}\hat{a}] = [\hat{N}, \hat{a}]\hat{a} + \hat{a}[\hat{N}, \hat{a}] = -\hat{a}\hat{a} + \hat{a}(-\hat{a}) = -2\hat{a}^2,$$

$$[\hat{N}, (\hat{a}^{\dagger})^2] = [\hat{N}, \, \hat{a}^{\dagger} \hat{a}^{\dagger}] = [\hat{N}, \, \hat{a}^{\dagger}] \hat{a}^{\dagger} + \hat{a}^{\dagger} [\hat{N}, \, \hat{a}^{\dagger}] = \hat{a}^{\dagger} \hat{a}^{\dagger} + \hat{a}^{\dagger} \hat{a}^{\dagger} = 2(\hat{a}^{\dagger})^2$$

Operator manipulation

$$[\hat{N}, (\hat{a})^k] = -k(\hat{a})^k$$

$$[\hat{N}, (\hat{a}^{\dagger})^k] = k(\hat{a}^{\dagger})^k$$

$$[\hat{a}^{\dagger}, (\hat{a})^k] = -k(\hat{a})^{k-1}$$

$$[\hat{a}, (\hat{a}^{\dagger})^k] = k(\hat{a}^{\dagger})^{k-1}$$

If
$$\hat{A}\psi = 0$$
, then $\hat{A}\hat{B}\psi = [\hat{A}, \hat{B}]\psi$

Fist excited states

Since \hat{a} annihilates ψ_0 consider acting on the ground state with \hat{a}^{\dagger} . It is clear that \hat{a}^{\dagger} cannot also annihilate ψ_0 . If that would happen then acting with both sides of the commutator identity $[\hat{a}, \hat{a}^{\dagger}] = 1$ on ψ_0 would lead to a contradiction: the left-hand side would vanish but the right-hand side would not. Thus consider the wave function

$$\psi_1 \equiv \hat{a}^{\dagger} \psi_0$$

We are going to show that this is an energy eigenstate.

Fist excited states

$$\hat{N}\psi_1 = \hat{N}\hat{a}^{\dagger}\psi_0 = [\hat{N}, \,\hat{a}^{\dagger}]\psi_0 = \hat{a}^{\dagger}\psi_0 = \psi_1$$

- ψ_0 is an eigenstate of the operator \hat{N} with eigenvalue N=0.
- ψ_1 is an eigenstate of the operator \hat{N} with eigenvalue N=1.
- \hat{a}^{\dagger} acting on ψ_0 increases the eigenvalue of \hat{N} by one unit.
- \hat{a}^{\dagger} is called the *creation* operator or the *raising* operator.

Fist excited states

Moreover

$$(\psi_1, \, \psi_1) = (\hat{a}^{\dagger} \psi_0, \, \hat{a}^{\dagger} \psi_0) = (\psi_0, \, \hat{a} \hat{a}^{\dagger} \psi_0)$$

= $(\psi_0, \, [\hat{a}, \, \hat{a}^{\dagger}] \psi_0) = (\psi_0, \, \psi_0) = 1$

 ψ_1 is normalized and is the wave function of first exited state.

Energy of the first exited state

$$E_1 = \hbar\omega \left(1 + \frac{1}{2}\right) = \frac{3}{2}\hbar\omega$$

Second Excited states

Next consider the state $\psi_2' \equiv \hat{a}^{\dagger} \hat{a}^{\dagger} \psi_0$.

$$\hat{N}\psi_2' = \hat{N}\hat{a}^{\dagger}\hat{a}^{\dagger}\psi_0 = [\hat{N}, \,\hat{a}^{\dagger}\hat{a}^{\dagger}]\psi_0 = 2\hat{a}^{\dagger}\hat{a}^{\dagger}\psi_0 = 2\psi_2'$$

 ψ_2' is a state with number N=2 and energy $E_2=\frac{5}{2}\hbar\omega$.

Excited state wave functions

The properly normalized wave function is

$$\psi_2 \equiv \frac{1}{\sqrt{2}} \hat{a}^{\dagger} \hat{a}^{\dagger} \psi_0.$$

$$\psi_3 \equiv \frac{1}{\sqrt{2}} \frac{1}{\sqrt{3}} \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a}^{\dagger} \psi_0 = \frac{1}{\sqrt{3!}} (\hat{a}^{\dagger})^3 \psi_0$$

$$\psi_n \equiv \frac{1}{\sqrt{n!}} \hat{\underline{a}}^{\dagger} \underbrace{\hat{a}^{\dagger} \cdots \hat{a}^{\dagger}}_{} \psi_0 = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^n \psi_0.$$

Shapes of the first three wave functions of the SHO

$$\psi_n \equiv \frac{1}{\sqrt{n!}} \hat{\underline{a}}^{\dagger} \cdot \dots \cdot \hat{\underline{a}}^{\dagger} \psi_0 = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^n \psi_0.$$

Eigenvalue of ψ_n for the operators \widehat{N} and \widehat{H}

$$\hat{N}\psi_n = \frac{1}{\sqrt{n!}}\hat{N}(\hat{a}^{\dagger})^n\psi_0 = \frac{1}{\sqrt{n!}}\hat{a}^{\dagger}\hat{a}\,(\hat{a}^{\dagger})^n\psi_0$$

$$= \frac{1}{\sqrt{n!}}\hat{a}^{\dagger}[\hat{a},\,(\hat{a}^{\dagger})^n]\psi_0 = \frac{1}{\sqrt{n!}}\hat{a}^{\dagger}\,n(\hat{a}^{\dagger})^{n-1}\psi_0$$

$$= \frac{n}{\sqrt{n!}}(\hat{a}^{\dagger})^n\psi_0 = n\,\psi_n$$

Since for the operator \hat{N} the eigenvalue of ψ_n is n, the energy eigenvalue E_n is given be

$$E_n = \hbar\omega \left(n + \frac{1}{2} \right)$$

Thank you for watching

Subscribe
Like

Comment

Share

